Next: Airy Functions, Previous: Introduction to Special Functions, Up: Special Functions [Contents][Index]
The Bessel function of the first kind of order
bessel_j
is defined as
although the infinite series is not used for computations.
When besselexpand
is true
, bessel_j
is expanded in terms
of elementary functions when the order besselexpand
.
The Bessel function of the second kind of order
bessel_y
is defined as
when
When besselexpand
is true
, bessel_y
is expanded in terms
of elementary functions when the order besselexpand
.
The modified Bessel function of the first kind of order
bessel_i
is defined as
although the infinite series is not used for computations.
When besselexpand
is true
, bessel_i
is expanded in terms
of elementary functions when the order besselexpand
.
The modified Bessel function of the second kind of order
bessel_k
is defined as
when
When besselexpand
is true
, bessel_k
is expanded in terms
of elementary functions when the order besselexpand
.
The Hankel function of the first kind of order
hankel_1
is defined as
Maxima evaluates hankel_1
numerically for a complex order
When besselexpand
is true
, hankel_1
is expanded in terms
of elementary functions when the order besselexpand
.
Maxima knows the derivative of hankel_1
wrt the argument
Examples:
Numerical evaluation:
(%i1) hankel_1(1,0.5); (%o1) 0.24226845767487 - 1.471472392670243 %i
(%i2) hankel_1(1,0.5+%i); (%o2) - 0.25582879948621 %i - 0.23957560188301
Expansion of hankel_1
when besselexpand
is true
:
(%i1) hankel_1(1/2,z),besselexpand:true; sqrt(2) sin(z) - sqrt(2) %i cos(z) (%o1) ---------------------------------- sqrt(%pi) sqrt(z)
Derivative of hankel_1
wrt the argument
(%i1) diff(hankel_1(v,z),z); hankel_1(v - 1, z) - hankel_1(v + 1, z) (%o1) --------------------------------------- 2
(%i2) diff(hankel_1(v,z),v); d (%o2) -- (hankel_1(v, z)) dv
The Hankel function of the second kind of order
hankel_2
is defined as
Maxima evaluates hankel_2
numerically for a complex order
When besselexpand
is true
, hankel_2
is expanded in terms
of elementary functions when the order besselexpand
.
Maxima knows the derivative of hankel_2
wrt the argument
For examples see hankel_1
.
Default value: false
Controls expansion of the Bessel, Hankel and Struve functions
when the order is half of
an odd integer. In this case, the functions can be expanded
in terms of other elementary functions. When besselexpand
is true
,
the Bessel function is expanded.
(%i1) besselexpand: false$ (%i2) bessel_j (3/2, z); 3 (%o2) bessel_j(-, z) 2 (%i3) besselexpand: true$ (%i4) bessel_j (3/2, z); sin(z) cos(z) sqrt(2) sqrt(z) (------ - ------) 2 z z (%o4) --------------------------------- sqrt(%pi) (%i5) bessel_y(3/2,z); sin(z) cos(z) sqrt(2) sqrt(z) ((- ------) - ------) z 2 z (%o5) ------------------------------------- sqrt(%pi) (%i6) bessel_i(3/2,z); cosh(z) sinh(z) sqrt(2) sqrt(z) (------- - -------) z 2 z (%o6) ----------------------------------- sqrt(%pi) (%i7) bessel_k(3/2,z); 1 - z sqrt(%pi) (- + 1) %e z (%o7) ----------------------- sqrt(2) sqrt(z)
The scaled modified Bessel function of the first kind of order
This function is particularly useful
for calculating
exp(-abs(z))*bessel_i(v, z)
.
Identical to scaled_bessel_i(0,z)
.
Identical to scaled_bessel_i(1,z)
.
Lommel’s little
This Lommel function is the particular solution of the inhomogeneous Bessel differential equation:
This can be defined by the series
where
Lommel’s big
Lommels big S function is another particular solution of the
inhomogeneous Bessel differential equation
(see %s) defined for all values
of
When
Next: Airy Functions, Previous: Introduction to Special Functions, Up: Special Functions [Contents][Index]