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ABSTRACT
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Funct ions is descr i bed. The General ized Hypergeometr i c Funct ions are ut ii zed as
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Generalized Hypergeometric Functions are utilized for the integration stage. A
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the Generalized Hypergeometric Function to Elementary and/or Special Functions.

The results of an early implementation which involves Laplace transforms

are given and some actual examples with their corresponding timing are provided.
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Chapter 1

INTRODUCTION

We present' a procedure for the definite integration of a class of

Special Functions, the so called functions of mathematical physics. In providing

this procedure, we include all the well known Special Functions - approximately

fifty - that often arise In mathematical problems in experimental .and

theoretical physics, in mathematical astronomy and satelite theory, as well as In

all branches of engineering - electrical, nuclear, naval, aero etc.

The area of Special Functions, despite its wide applicability to

problems of many areas of engineering and science, is very well known for its

"chaotic state"[21. For us, the wide applicability was the most attractive point

and strongly motivated us throughout our research, while the "chaotic state" of

the domain became to us a challenging target for exploration. A lot of

Information, encyclopedic in nature, can be found in numerous books and articles

which include specific problems and methods, most of which are mainly results of

particular applications. The tools that are mainly used are those provided by

classical mathematical analysis [31, (4].

1. Small portions of this thesis have been copied from the author's paper
"Symbolic Laplace Transforms for Special Functions" [1]
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An effort towards structuring the domain of Special Functions has been

employed by using Lie Algebras and Lie Groups [21, [5]. This approach is an

effort to "bridge" the big gap between pure and applied mathematics much effort

should be done in this area in the future.

In computer science, there has been considerable effort to compute

values of some very important Special Functions with different numerical and

approximating techniques [6]. From the point of view of symbolic mathematics,

some cases of the Error, Beta, and Gamma functions have been employed in

Indefinite integration [7], and definite integration [8]. All of these packages

are implemented in the symbolic manipulation system MACSYMA [9] at the M.I.T.

Laboratory for Computer Science (formerly Project MAC). To the best of our

knowledge there has been no other system designed for manipulation of the

integral transforms or definite integration of the approximately fifty Special

Functions, wherein the focus of our thesis lies.

One faces two main difficulties when dealing with the problem of

definite integration of Special Functions in symbolic manipulation. First, the

area of Special Functions as we have already mentioned has been acknowledged as a

"chaotic area". Second, definite integration generally is a recursively

unsolvable problem [10]. In our procedure we take advantage of the fact that

most of the Special Functions can be considered as particular instances of the

Generalized Hypergeometric Function and therefore can be integrated, using the

Generalized Hypergeometric Function representation, with a table consisting of

very few formulas. Besides, we were strongly influenced by the monumental work

of "Bateman's Manuscript Project" [3), [111 to view a significcnt part of

Definite Integration as particular instances of Integral Transforms.
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What our thesis will try to show is not a general algorithm, but what

is the best way, using currently available knowledge, to solve a large portion of

the aforementioned problem in a fashion which is relatively general and

computationally effective.

The results we obtained in an early implementation which did not

incorporate all of the described methods In this thesis encouraged us

tremendously and ultimately influenced our decisions that this was a good way to

follow (Results of this early implementation with some actual examples

accompanied with their timing is shown in the Appendix 1). Moreover, we had the

chance to utilize available machinery from the classical mathematical analysis

and create new algorithmic techniques as well as new formulas (see chapter 3).

The notation we follow throughout this thesis is the traditional one

and established by the Bateman Manuscript Project [31, Ulii.
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1.1. OVERVIEW OF OUR APPROACH

In this section we provide a general overview of our scheme of

definite integration. Our principal strategy for the definite integrals is to

classify them as some kind of integral transform. We have been mainly concerned

with the integration of the class of Special Functions. The main vehicle for the

class of Special Functions is the Generalized Hypergeometric Function [121.

Definition 1. We call the Generalized Hypergeometric Function,

otherwise known as the Generalized Gauss function, the series

p F q[(aa2,''', ap; bj,b2,..., b,; z1

inf (al)n(a2)n '.' (ap )n zn

- --------------------
n-8 (bl)n(b2)n ... (bq)n n!

where a1, a2 ,..., ap and b1, b2,...,bq are complex parameters, z is a complex

variable. We denote:

(a)n - a(a+1) ... (a+n-1) (2)

We also denote the above series as pFq[ala2 9'...ap;b,b2,...,bq:zJ or

pFq[(a); (b);zl or simply pFq(z).

The key ideas in our design, depicted in figure 1, are:

Stage 1. Represent the Special Functions, if possible, as particular

instances of the Generalized Hypergeometric Function.

Stage 2. Provide a fairly general formula to integrate the results of

stage 1.



8

Stage 3. Take the result of stage 2 involving a Generalized

Hypergeomatric Function, and reduce it to an elementary and/or Special

Function(s).

LEVEL II.

I SPECIAL I
LEVEL 1. --- >1 FUNCTIONS I

I .I

IGENERALIZED GENERALIZED
IHYPERGEOMETRIC I--------->HYPERGEOMETR ICI
IFUNCTIONS I IFUNCT IONS
I _ _ _ _ I I _ _ _ _ I

is 4

SPEC IAL I
I AND/OR I
JELEMIENTARY ;-->

FUNCTIONS I
I _ _ _ _ I

Figure 1.

Hence, our design al ternates betwmen two levels:

Level 1.

Level 2.

The expression involves Special and/or Elementary Functions.

The expression involves Generalized Hypergeomatric

Functilons.
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e wi I I give next a simple iI lustration of the above scheme, but f irst

let's provide one more definition.

Definition 2. We calI the Laplace Transf orm of a real or complex

function f(t), defined for all real nonnegative values of t, the integral

'f(t)e-Pt dt (3)

If It exists for some values of the complex variable p. It is written L[f(t)J

and determiies a function F(p), thus

L [f (t)J I fwMe-Pt dt -F (p) (4)

We next proceed with a simple illustration of this approach.

Given input t-3/2 13(2al/2tl/ 2) e-pt (5)

where 13 is a modified Bessel function of the first kind (41, [133, the following

willI take place in each of the three stages:

Stage 1.

Since

Iv(z) a e-vgi/2 jv(zeri/2) (6)

expression (5) becomes

Since

zv

Jv(z)a----------SF1[ v+1; -1/4 z2] (8)

2vr (v+1)

(7) becomes
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a3/2
-- F1 1[ 4; at] e-pt (9)

Sp

Stage 2.

In this stage we recognize that our input is a Laplace transformable

expression. Hence, we integrate by using the following formula [111.

of
t.- mFn(a,... ,am;r..,rn; (1t)k)e-Pt dt (10)

s s+1 s+k-1 ki
t (s)P-sm+kFn(a,...,am'----,...,-----;r 19 r2 ,*..,rn'(~~)k)

k k k P

which is valid for Re(s) > 0, m+k < n+1, where k,m,n are integers.

Thus (9) becomes

a3/2
-- 1F1[ 1; 4; a/p] (11)

Sp

Stage 3.

At stage 3, we apply to (11) the following "Kummer's transformation"

[3]

1F1[C a; r; zi a ez 1FI[ r-a; r; -z (12)

and (11) reduces to

a3/2
-- ea/p 1Fj[ 3; 4; -a/p] (13)
6p

We recognize that the series in (13) is an instance of an Incomplete

Gamma function (3], because

1F [(a; a+1; -x a x-a y (a, x) (14)

Therefore, (14) finally becomes
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ea/p p2
------- y (3, a/p) (15)
23/2

Hence, our research was split into as many parts as there are stages

in the above illustration. As it turned out decisions on designs of stages one

and two are somewhat interdependent, whereas stage three is totally independent.

Of these three stages, the third stage give rise to the most serious

difficulties0  Thus our attention and emphasis was shifted most of the time to

problems of this third stage. As a consequence, Chapter 3 that refers to the

reduction methods occupies the focus of this thesis. Chapter 2 describes the

two earlier stages.

Chapter 3 concetrates on two groups of reduction methods of the

Generalized Hypergeometric Function:

1. Those that are dependent on the number of parameters

(we call them "general reduction methods").

2. Those that are independent of the number of parameters

(we call them "special reduction methods").

From the second group we have been principally concerned with reduction

procedures of the following instances of the Generalized Hypergeometric Function:

tF(z), which is actually the exponential function; gF(z), which mainly involves

the Bessel functions; IF6 (z), which includes the binomial functions; 1 FI(z), the

so called "Confluent Hypergeometric Functions"; 2F1(z), the (Gauss)
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Hypergeometric Functions which include the Elementary functions in addition to

some Special Functions.

Chapter 2 begins with a short overview of the mathematical

background. The reader might want to consult the references. However, we feel

that this is not necessary to capture the points of this thesis. Chapter 2

next demonstrates the policy we adopted for each of the approximately fifty

Special Functions so that our goal, viewing each Special Function as a

Generalized Hypergeometric Function whenever possible, can be accomplished

without too much difficulty in the integration stage, difficulty that could have

been caused as a result of generalizing the problem. Finally, Chapter 2 ends

with the integration stage. Here, we indicate our major design decisions for the

table look up in terms of lemmas. These lemmas help us to keep the number of

formulas in our table down to a minimum. Moreover, we further ease the burden of

the table for composite function cases (rather "extraneous cases") by

appropriately utilizing different integral transform properties that recursively

call our scheme as illustrated in this chapter (fig. 1) for relatively simpler

cases.
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Chapter 2

SPECIAL AND GENERALIZED FUNCTIONS. STAGES I - II.

The Generalized Hypergeometric Function has been defined as a series

(Chapter 1). This series satisfies the differential equation:

d d d d
(z -- (z -- + b1-1)(z -- + b2 - 1) ... (z -- + bq 1)

dz dz dz dz

d d. d
- (z -- + a,) (z -- + a2) (z -- + a)) y-

dz dz dz

The series pFq(z) converges under the following conditions:

2.

For all values of z, real or complex as long as p q

For all values of z such that Izi < 1, as long as p - q+1

3. For z-1 if Real(lbv-Lav) >8
v-i v-i

4. For zua-1 if Real(bv - av) >
v-i v-i

In case that p > q+1, the series never converges, except when z - 8, while

the function is only defined when the series terminates and this happens when at

(1)
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least one of the parameters in the L1  list is zero or some negative integer

(see Chapter 3).

An obvious conclusion of Definition 1, of the Generalized

Hypergeometric Function is that any permutation of the members of L1 or L2

lists does not affect the Generalized Function.

A notion which is particularly useful for our reduction purposes is

"contiguity".

Definition 1. Two Generalized Hypergeometric Functions

pFq( Li; L2; z) and pFq[ L1'; L2'; z] (2)

are called contiguous if they are alike except for one pair of parameters in

which they differ by a unity.

Every Generalized Hypergeometric Function pFq(z) is contiguous to

2p+2q others. Hence, the Hypergeometric Function 2F1 E a, b; c; J is

contiguous to 2FI[ a+, b; c; zi and obviously to five others.

If we use the following abbreviations:

F - FE a1, a2, ... , ap; b1, b2 , .,, bq; zI (3)

Fta1*1J * FE al~t, a2, .. , ap; bj, ... , bq; z] (4)

F b1 11 F[ a1, a2, '. ap; bk1, . bq; zI (5)

then we have the following contiguous relations presented in tables one and two

for the Gauss Hypergeometric Functions and the Confluent Hypergeometric Functions

correspondingly.
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(bj-2a1 +(a1 -a2 ) z)F + a1 (1-z)F[a1 +11 a (b1-a1 )F [a1 -11 (6)

(a 2-a 1)F + a1 F a1 +1J - a2 F a2+1J (7)

(b1-a1-a2)F + a1 (1-z)Fa+1J - (b 1-a 2 )F[a 2 -1] (8)

b1 (a 1+(a 2 -b 1 )z)F + (b1-a1) (b1-a2)zF Cb1+11 (9)

a b1 (1-z)F [aj+1

(b1-a 1-1)F + a1F[a1+11 - (b 1-1)F[b 1 -1I (10)

(b1-a1-a2)F + a2 (1-z)Fla 2+11 - (b1-a1)Fa-11 (11)

(a 2 -a 1 ) (1-z)F + (b 1-a2 )F[a2-11 - (b 1-a 1 )F(a1 -11 (12)

b1(1-z)F + (b 1-a 2 )zF[b+1] - b1F[a1-11 (13)

(a 1-1+(1+a 2 -b 1 )z)F + (b1-a1)F a1-11 a (b1-1) (1-z)F[b-1J (14)

(b 1-2a 2+(a2-a 1)zlF + a2(1-z)F[a 2+1J a (b 1-a 2)F [a2-11 (15)

(b 1-a 2 -1)F + a2 F[a2+11 a (b 1 -1)F[b 1 -11 (16)

b 1 (1-z)F + (b 1-a 1)zF[b1 +1J - b1 F b1-11 (17)

(a2 -1+(1+a 1-b 1 )z)F + (b 1-a 2 )F[a 2 -11 - (bj-1) (1-z)F [b1 -11 (18)

b1 (b 1-1+(1+a 1+a 2 -2b 1 )z)F + (b1 -a1 ) (b-a2 ) zF [b1+1J (19)

-bj (bj-D)(1-z)F [bj-I]

Table 1.

(b1-a1)F~a1-11 + (2a 1-b 1+z)F -a1Fla1+1] - 0 (20)

b1(b1-1)F[b 1-1) - b1(b1-1+z)F + (b 1-a1)zF[b1+1) - 0 (21)

(a1-b1+1)F - a1F~a1+1J + (b1 -1)F~b 1-1] - 0 (22)

b1F - b1Fta1-1J - zF bj+1J a 0 (23)

b1(a1+z)F - (b 1 -a1 )zF~bj+1J - ab1F~aI+1J - 0 (24)

(a-1+z)F + (b 1-a1)F a1-1) - (b 1-1)F[b 1-11 a 0 (25)

Table 2.
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Generally, such relations exist for any Generalized Hypergeometric

Function [141.

Of great interest to us are also different transformations of the

Confluent Hypergeometric Functions as well as of the Gauss Hypergeometric

Functions. For example, I inear transformat ions are appli cable to both Conf luent

and Gauss Hypergeometric Functions while quadratic, cubic and other of higher

order transformations are available for the Gauss Hypergeometrics. Analytic

tables for the quadratic transformations and some important qubic ones are

provided in the Appendix 2. For more information concerning the above

transformations the reader should consult Goursat's paper (151.

The following differential relations depicted in tables three and four

for the Confluent and Gauss Hypergeometric Functions correspondingly also hold

and are of great interest to us (31.

dn (a)n(b)n

--- 2 F,[ a, b; c; zi -------- 2FI1 a+n, b+n; c+n; zI (26)

dzn (c)n

dn

(a)n za-1 2F1( a+n, b; c; z * --- cza+n-1 2F [ a, b; c; zI] (27)

dzn

dn

(c-n)n zc-1-n 2F 1( a, b; c-n; z --- [zC-1 2F11 a, b; c; z1 (28)

dzn

(c-a)n zc-a-1(1-z)a+b-c-n 2F1 [ a-n, b; c; z (29)

dn
a --- (zca+n-1(V-z)a+b-c 2FI( a, b; c; zi]

dzn
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(c-a)n(c-b)na,
(1-Z)a+b-c-n 2F a,b; c+n; zi

bFn

dn

-(1~~~~z)8[l 2111:a+nb;cn;z

- ---. l(l-Z)a+n-1 2F,[ a, b; c; zl

dzn

(-1)n(a)n(c-b)n2F, 
an, b; cn; t(-----------(1-z)a-n 2F [ a-n, b; cn; it

(Wn

dn
- ---(-Z)a+n c 2F11 a, b; c; z]
dzn

(c-n)nzc-1-n(-z)b-c 2F[ a-n, b; c-n; le3

dn
...--Izc-1(1-z)b-c+n 2 [ Itb ; l

dzn

(c-n)nzc-l-n(l-zla+b-c-n 2FjI a-n, b-n; c-n; Al

dn
- ---[t zC-1 (1-z) a+b-c 2F11[ a, b; c; Al]

dzn

Table 3.

dn
--- iFi I a; c; At

dzn

dn
--- [za+n-1 F1[ a;

dzn

dn
--- [ 1  1Fi [ a; c; ziAl -

dzn

(a) n

(C) n

iFit a+n; c+n; zI

c; A] u (a)nza-1 Fi[ a+n; c; it

(34)

(35)

(36)

(37)

(-1)n(1-c)nzc-1-n 1F 1I[ a; c-n; zl

dn (c-a)n
--- z iFiC a; c; zIl - (-l)n_------e-Z iFi[ a; c+n; it

dzn (c) n

(30)

(31)

(32)

(33)
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dn
--- [,-zzc-a+n- 1 IF1 [ a; c; z]) (38)
dzn

(c-a)ne-zzc-a-i 1F1 [ a-n; c; zi

Table 4.

Most of the Special Functions (eg. Bessel, Legendre, Whittaker etc.)

are solutions of a particular instance of the differential equation (1). They

have some series expansions (instance of the Definition 1 of Chapter 1), they

satisfy properties such as contiguity etc. [31, [121. Hence, we will concentrate

on the different relations essential to our design and ignore definitions and

comments on every sinrjle Special Function, unless really necessary. For an

extensive study of the different Special Functions the reader should consult the

Bateman Manuscript Project [31.
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2.1. THE FIRST STAGE

Our main concern during stage one of our definite integration scheme

ise

1. To represent the Special Functions of the given

expression as a Generalized Hypergeometric Function

2. To be sure that the resulting expression has the

appropriate format to be successfully proccessed in

stage two.

Hence, we will be first concerned with the representation of Special

Functions in terms of the Generalized Hypergeometric Function.

As we have mentioned, we have dealt with approximately fifty Special

Functions. We have divided the set of the Special Functions into two major

types. The first type includes all Special Functions that are directly

transformed through some relation into a Generalized Hypergeometric Function, and

the second type includes those that are expressed in terms of other Special

Functions and ultimately are expressed in terms of Special Functions of the first

type. This classification has been influenced by the tendency to utilize and

manipulate as few Special Functions as is necessary.

Let us start the discussion with the class of Bessel functions.
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The Bessel function of the first kind J,(z) is of the first type ind

is automatically transformed into a Generalized Hypergeometric Function through

the relation

zv Z2

J.(z) - ----- i0 v+1; - --1 (39)
r(v+1) 4

The Modified Bessel function of the first kind Iv(z) is of the

second type. It is transformed into a Bessel function of the first kind through

the relation

Iv(z) -0 -vwl/2 j Ozevi/2) (40)

where J,(z) is of the first type.

The Bessel function of the second kind Y, (z) is a member of the set

of functions of the second type, for noninteger values of the index v because

Y, (z) - (cos(vw)Jv(z) - J..v(z)) csc(vr) (41)

where relation (41) holds for noninteger values of the index v and where

J,(z) is of the first type. In case that v has an integer value, the

following relations hold for our Yv(z)

Yn(z) a lim Yv(z) (42)
v->n

Y-n(z) -(-)n yn(z), n e N (43)

It can be shown that relations (42) and (43) imply that Yn(z) for n C Z is not

a function of type two (and hence certainly not of type one). Thus, Yv(z) for

v e Z gives rise to some complications in our scheme. The case Yn(z), n e Z
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has to be handled individually in stage one as well as in stage two. For an

extensive analysis see Watson and Tranter (41, [13).

The Modified Bessel function of the second kind Kv(z) belongs to the

set of second type functions for noninteger values of the index v because

K (z) - 1/2 w csc(s'v) (L-(z) - I0(z)) (44)

holds for noninteger values of the index v where 1(z) is a type one function.

For v e Z we have

K-n(z) - (-j)n Kn(z) (45)

Knz) * lim K (z), n e N (46)
v->n

Thus the Modified Bessel function of the second kind K(z) is handled in the

same fashion as Yv (z) function is handled.

The first kind of Hankel function Hy,,(z) (also called the first kind

of the third kind Bessel function), belongs to the second type of functions and

can be obtained from the following relation

Hl,i(z) - J,(z) + iY (z) (47)

where Jv(z) is a first type function and Y(z) a second type one. Obviously,

no special handling for the function H, 1 (z) for v e Z is required because

Yv(z) function takes care of that.

In a similar manner the second kind Hankel function H, 2 (z), is a

second type function and can be obtained from the relation

Hv, 2 (z) - Jv,(z) - iY (z) (48)
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Let us consider next the Kelvin functions and those related to them.

They are all ultimately expressible in terms of Bessel and Modified Bessel

functions as shown by relations (49) through (52):

berv(z) a 1/2 J,(z e3ri/4) + 1/2 Jv(z e-3 1ri/ 4 ) (49)

beiO(z) a i/2 Jv(z e-310/) - i/2 Jv(z e3ri/ 4 ) (58)

kerv (z) - 1/2 Kv (z eW"I ) + 1/2 K (z e-Wi/4) (51)

keiO(z) - i/2 K (z e-i/4) - 1/2 K (z eri/4) (52)

and therefore they belong to our set of functions of the second type.

Particularly, here we have

ber(z) - berg (z) bei(z) - be ig(z) (53)

ker(z) - kerg(z) kei(z) - kei g(z) (54)

Like the Kelvin functions, the Airy functions Ai(t) and Bi(t) are

ultimately expressible in terms of Bessel functions as the following relations

show:

Ai(t) a 1/3 t1/2 ewi/6 J-1 /3 (21t3/
2/3) (55)

- 1/3 t1/ 2 e-T i/J1/3(2it
3/2/3)

Bi(t) - (t/3)1/2 eri/6 j-1/3 (2it3/
2/3) (56)

+ (t/3)"/2 e- ri/6 J/3(2it3/ 2 /3)

thus they are also second type functions.

The Lommel function Spv(z) is of the first type as the following

relation show
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Z11+1p-v+3 p+v+3 z2

sp(z) - ------------- F21;----------; - -- 3 (57)

(p-v+l p+v+1) 2 2 4

The Lommel function S, (z) is of the second type because of the

following relation

S0,v(z) - sp9(z) (58)

p-v+1 p+v+I p-v p-v

+ 2- 1r(-----) Ir(-----) (sin(--- r) Jv(z) - cos(--- r) Y(z))
2 2 2 2

where s0, (z) and J, (z) are of the first type while Y(z) is of the

second type, requiring for v e Z some special treatment (as indicated before).

Furthermore, relation (58) holds provided that (p-v+4)/2, (p+v+1)/2 are

nonnegative integers.

The Struve function HV(zI is a second type function, since

HVW )a-21-V i,-1/2 (r(v+1/2))-l sv,v(z) (59)

Likewise, the Struve function L(z) is of the second type because

L (z - -(+1)vri/2 H (z eir/2) (60)

After the Bessel family of functions we come to the Gauss

Hypergeometr i c Funct ions.

The Legendre functions P.. (z and G,piz) are both f irst type

functions since
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1 z+1
Pvp(z) - ----- (...)A/2 2F1 [ -v, v+1; 1-p; 1/2-z/21 (61)

r(1-P) z-1

e#Ir 4 /2r (p+v+1)
Q (z) ------------------- z-r-v-1 (z2 .1)Wst/ 2  (62)

2v+lr(v+3/2)

p+v+I p+v+2 3

2F1I 2 .- - ----- ; v*-;Z-2
2 2 2

Particularly, here the following relations hold

Pve(z) - P (z) Qv,0(z) - Ov(z) (63)

furthermore, for t a 0 and v - n - 0, 1, 2, .. we get the Legendre

Polynomials.

The (Complete) Elliptic integrals (functions) are also type one

functions and are given by the following relations

K(k) - r/2 
2F1j[ 1/2, 1/2; 1; k2] (64)

E(k) - /2 2F [ -1/2, 1/2; 1; k2] (65)

The Orthogonal Polynomials of Jacobi are of the first type and are

given by the following relation

n+a
Pn,.(a,9 ) W a ( ) 2F1J -n, n+a++1; a+1; (1-x)/2] (66)

n
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The Orthogonal Polynomials of Gegenbauer Cnv(x), Legendre Pn (x)

and Tchebichef Tn(x) and Un(x) are of the second type given by the following

relations

(2v)n
Cn,v (x) -------- En, (v-1/2,v-1/2) (x) (67)

(v+1/ 2)n

Pnx) Cn,1/2(x) (68)

Tn (x) - n/2 Cn,e(x) (69)

Un(x) - Cni(x) (70)

We next consider the Confluent Hypergeometric Functions [16]. The

Whittaker function r,,(z) which covers the whole spectrum of the Confluent

Hypergeometric Functions, is a type one function and is given by the relation

M1G,(z) z1/2+0 e-z/2 1 FI[ 1/2+gs-x; 2 p+ ; zI (71)

The Incomplete Gamma function 'y(a,x) is also a type one function

and is given by

y(a, x) - a-lx 1F1 [Ia; a+1; -x (72)

The second Whittaker function W,,, (z) is a type two function and

given by the relation

r(-2p) r(2p)
WA(z) - ------------ MA(z) +----------- Mgt - (z) (73)

r (/2-p-x) 1r(1l/2+p-x)

as long as p does not take integer values and the quantities 1/2-p--a and

1/ 2 +p-x are not negative numbers or zero. Otherwise, W,,,(z) is considered

separately in both stages one and two.
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The Parabolic Cylinder function is a type two and is given by

Dv (z) -2V/2+1/4 Z-1/2 W v/2+1/4,1/4(z 2/2) (74)

for v = n = 9, 1, 2, ... we have the Parabolic Cylinder Polynomials.

The Bateman function kv (z), the two Error functions Erf(x) and

Erfc(x), the Incomplete Gamma function I'(a, x), the exponential integral and

related functions Ei(x), si(x), Si(x) and Ci(x) are all type two functions

and are given by the following relations:

k2v(z) r(v+1)- 1 Wv,1/2( 2 z) (75)

Erf(x) - 1/2 -y(1/2,x2) (76)

Erfc(x) a (rx)-1/2e-x2 /2 W 1 /4 11 4 (x
2) (77)

lr(a,x) x(a4-)/2-x/2 W (a-A12a/2,(x) (78)

-Ei(-x) - e-x/2-1/ 2 -1/ 2 ,0(x) (79)

Si(x) - r/2 - 1/2 1/ 2 e-ix/ 2 x-1/2  -1/2,5 (ix) (88)

+ 1/2 i3 /2ix/2 4-1/2 W-1/2,6 (ix)

Ci(x) - -1/2 i3/2e-ix/2x-1/ 2 -1 /2 ,0(i x) (81)

-1/2 il/2eix/ 2,-1/W2 U-11 2,0 (-i x)

si(x) - -r/2 + Si(x) (82)

Laguerre Polynomials have been assigned to the f irst type set and are

given by the following relation

n+a
Ln,a(x) I 1F1 [ -n; a+1; x (83)

n
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The Orthogonal Polynomials of Hermite, special cases of the Parabolic

Cylinder functions, belong to the second type set and are given by the following

relation

Hen(x) e eX2 /4 n(x) (84)

In a similar way we have considered products of Special Functions

which can be expressed as a single Generalized Hypergeometric Function. Thus the

product of two Lessel functions Jv(z)JpA(z) is of the first type and is

transformed into a Generalized Hypergeometric Function through the relations (85)

and (39)

ti t [p; z gFC [v; zI (85)

- 2F3L p/2+r/2, p/2+e/2-1/2; p. r, p+r-l; 4z1

On the other hand, the product I,(z)Kp0(z), where 'v (z), K (z) are modified

Bessel functions of the first and second kind respectively, belongs to the second

type and is ultimately expressible in terms of functions of the first type, for

noninteger values of the index p. Similar arguments are applicable to similar

products of the so far mentioned Special Functions. Table S provides products

of Generalized Hypergeometric Functions which are expressible in terms of one

General ized Hypergeometric Function.

(2F1C a, b; a+b+1/2; zJ) 2  (86)

. 3 F2L 2a, a+b, 2b; a+b+1/2, a+2b; z

tFi[ p' z gFC [Ip; -z1 (87)

- gF31 p, p/2, p/ 2+1/ 2; -z 2/43
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1F1I a; p; z1 FI[ a; p; -zJ (88)

- 2 F3 C a, p-a; p, p/2, (p+1) /2; z2 /41

1F1I a; 2a; z]1 F1C 5; 20; -z) (89)

a 2 F3 [ (a+)/2, (a++1)/2; a+1/2, 0+112, a+; z2/4]

2FI a, 5; a+0-1/2; z] 2Fi( a, 0; a++1/ 2 ; z] (90)

- 3F2C 2a, 20; a+; 2a+20-1, a++1/ 2; zi

2Fi a, 5; a+-1/2; zJ2 F1 [ a-1, 5; a+0-1/2; zI (91)

- 3F2 2a-1, 20, a+#-1; 2a+20-2, a+-1/2; zi

Table S.

Due to the importance of the area of "products of Special Functions"

in our scheme, we plan in the near future to further investigate this area.

Relations (39) through (91) actually show the way we have chosen to

transform a given Special Function to its corresponding Generalized

Hypergeometric representation, whenever this is possible. As it has been already

indicated, we may need many intermediate steps. For example, the Orthogonal

Polynomial of Legendre is first transformed into a Tchebychef which is next

transformed into a Jacobi and at last to a Hypergeometric form. An obvious

question that arises is, "why do we need the "intermediate steps"? Why do we

not transform the Special Function in one step to its Generalized Hypergeometric

representation? For example, why Is the Legendre Polynomial not given

immediately by relation (92) ?

Pn(X) a 2F11 -n, n+l; 1; 1/2-x/21 (92)
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The reason that we decided to follow this very "conservative" strategy is as

follows:

At every level of generalization some particular

properties and knowledge might be applicable,

and yet is not generalizable and therefore not

applicable in a higher level.

The history of Special Functions reveals that people have always come

up with "new problems" requiring definition of "new Special Functions" which

generally have some "tight" or "loose" connection (and which generally add new

chaos to the already existing one) with the set of "fifty" we selected to work

with. Hence, we feel that our strategy would best serve further possible

additions of new Special Functions to the already existing set.

To give support to our argument, we give as an example relations (93)

and (94) which hold only for Bessel functions and some Orthogonal Polynomialse

respectively.

Y-n(z) (-1)n yn(z), n e N (93)

POLYn (-x (-1)n PDLYn(x), n e N (94)

where POLYn(x) is the Orthogonal Polynomial of Legendre or Tchebychef or

Gegenbauer or Jacobi, etc.

In the light of these remarks, it is seen that the aforementioned

strategy also facilitates attainment of our second objective (mentioned at the
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begining of this section) and provides more flexibility in interfacing stages one

and two. For the time being, let us investigate the second stage and see its

problems. From time to time we will return to stage one and resolve interfacing

problems of stages one and two.
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2.2. THE SECOND STAGE

In the integration stage we determine if an expression is Laplace

transformable or Fourier transformable or any other kind of transformable

expression.

We will now add to the already mentioned definition of Laplace

Transforms some definitions of other Integral transforms.

Definition 2. We define the Fourier cosine, sine and exponential

transforms to be the following corresponding integrals:

f (x) cosxy dx (95)

f (x) s1in (xy) dx (96)

Lf(x) -ixu dx (97)

Definition 3. We call the Hankel transform of order v of the

function f(x) the integral

f (x) jv(x( 12 dx (98)

where y is a positive real variable.

Definition 4. We call the Y-transform of order v of the function

f(x) the integral

f (x) y I xy) (xy)1/ 2 dx (99)

where y is assumed a positive real variable.
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Definition 5. We call the K-transform of order v of the function f(x)

the integral

OD

Jo f(x)Kv (xy) (xy)1/ 2 dx (188)

where y Is regarded as a complex variable.

Definition 6. We call the Stieltjes-transform of f(x) the integral

f(x)(x+)-' dx (181)

where the integration is over the positive real x-axis, and y is a complex

variable ranging. over the complex y-plane cut along the negative real axis.

We next give some key remarks in terms of lemmas

Lemma 1. The Hankel transform of a function f(x) reduces to the

Fourier sine transform for v = 1/2. Particularly, the following relation holds

ff(x)J1 /2 ()(xy)"1/ 2 dx - (2/r)1/2 (x)sin(xy) dx o2

Proof This is immediate from definitions (96) and (98).

Similarly, we have.

Lemma 2. The Hankel transform of a function f(x) reduces to the

Fourier cosine transform for v a -1/2. Particularly, the following relation

holds

f (x) J-1/2(x x"/2 dx (2/w)l2 Cf(x)cos(xy) dx (103)

Lemma 3. For the exponential Fourier transform the following relation

holds
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f (x) e-IxU dx (104)

- Cf (x)+f(-x)]Icos (xy) dx - ifo [f (x) -f (-x)]s9in (xy) dx

Proof This is an immediate consequence of relations (95), (96) and

(97).

Lemma 4. The K-transform of order v of a function f(x) reduces to

the Laplace transforms of that function for v - *1/2. Particularly,

(w/2)1/2 Lu(x)-xy dx (185)

. f(x)ki/2 (xu)(xud"
2 dx

fa f (x)K-1/2((xI1/2 dx

Proof It is immediate if we notice that

K1/2(z) - (-)12 e-z (186)
2z

As we saw in a previous paragraph, we divided the set of Special

Functions into two major types. In particular we saw that most kinds of Bessel

functions, were expressible in terms of the Bessel function J, except for some

indices. A natural consequence is that here the K and Y transforms can be

expressed in terms of the Hankel transforms for certain indices. Particularly,

we have.

Lemma S. The following relation holds as long as the index v is not

an integer.

Jf (x)Yv(xy) (xy)1/ 2 dx (187)

- cot (v) f(x)Jv(xy)(xy)1/2 dx

- csc (vg) f(x) Jv(xy)(xy)1/2 dx
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Proof This is an immediate consequence of relation (41) of this

Chapter.

A similar relation to relation (187) can be also established between

Hankel and K transforms. Ho.Mever, it is of very limited practical value since

the Hankel transfccms for y complex very rarely converge.

Lemma 6. The Stieltjes transforms of a function f(x) where x lies on

the positive real axis and y complex, are iterated Laplace Transforms. Namely,

(108)x) W(x+y) 'Idx

af([f (x) e-xt dt] exy dy

The above mentioned relationships among the different transforms are

not the only ones. Hence, the following relationships also exist between the

Laplace and K transforms.

f (x)K.(xy) (xy)1/2 dx

.1/22~ y v+1/2

r (v+l/2)

for Re(v) > -1/2

,f (x)Kv(xy) (xy)1/ 2 dx

wl/ 22-vyl/ 2-v

r (v+l/2)

for Re(v) > -1/2

(109)

2-t2) v-1/2tl/2-vf(ti dtie-xy dx

(110)

Ct2_u2) v-1/2 ECxv+1/ 2 f (xl)-tx dx] dt

We selected to follow the path of lemma 4 and not the paths of relationships -
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(1893) and (110), because lemma 4 provides us with more powerful and efficient

schemes for our design. The same arguments apply for relation (111) that exists

between Hankel and Laplace transforms as well as other existing relationships of

the above transforms.

tv/2-1/4(f v( jvixy)(xy)1 / 2 dxle-ts dt (ll)

- e v-i htv/2-1/4f[(2t)1/2Je-t/s dt

The interconnections indicated in the above lemmas, play an important

role in our design at stage two, thus avoiding redundancy and keeping the

necessary knowledge down to a minimum.

Of course, the Integral transforms are not exhausted by the

definitions that have been given so far. We have the Mellin transforms, the H

transforms, the Kontorovich-Lebedev transforms and miscellaneous transforms such

as the Fractional integrals, Hilbert etc. In general, the interconnection

existing among them is loose and consequently each one requires individual

attention. However, we should still look at each one in conjunction with the

others. We will not make any more definitions nor we will extensively study here

each particular transform - for more information on the different integral

transforms see Sneddon and Bateman [18], [111.

We will next describe the ideas which are useful for our design (fig.

1), and applicable to each of the above mentioned transforms, preferably

selecting examples with Laplace and Hankel transforms.

A design for the Integral Transform algorithm should incorporate two
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major components: the integration process, and the different Integral Transforms

properties.

We decided to form a table which contains as few formulas as possible.

This strategy has the following consequences:

1. The overall design of the system becomes algorithmic in the sense

that the system works deterministically, knowing what it can really do and what

It cannot, and does not waste time by trying different approaches.

2. The main burden and difficulty of the problem shifts from stage

two to stages one and especially three, where we have to reduce the Generalized

Hypergeometric Functions to some Elementary and/or Special Function(s).

As far as the Integral Transforms properties are concerned, our

general policy consists of applying them in stage two, at the Generalized

Hypergeometric Function level. Hence, stage two can be divided into two

substages.

Substage 2.1 Utilize the Integral Transforms properties.

Substage 2.2 Integrate.

Let us first consider substage two and the decisions that must be made

there.
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The major decisions in substage two concern the contents of the table

look-up. We decided that we should accept formulas in our table look-up only if

they contain Generalized Hypergeometric Functions and then from this smaller set

select the most general. Furthermore, lemmas one through six play a key role in

deciding about the generality of such a formula.

However, we allow exceptions and we incorporate formulas that do not

contain Generalized Hypergeometric Functions, under the following circumstances.

1. The Special Function(s) was (were) not

successfully transformed into a Generalized

Hypergeometric Function.

2. The expression resulting from stage one

was not integrated at stage two.

For example, the Bessel function of the second kind Yn(z) for

integer values of the index n, as we have already seen, is not expressible in

terms of the Bessel function Jv(z) and thus not in terms of a Generalized

Hypergeometric Function. Inevitably, the cases where the function Yn(z), n C

Z, are involved require special consideration and their own formulas of

Integration. The same arguments apply for the Modified Bessel function of the

second kind Kn (z). Apart from Kn(z), Yn(z), no Bessel function requires any

particular attention, since every Bessel function is expressible in terms of

JV(z), Yn(z) and Kn(Z), v e C, n e Z. A similar situation also exists for

products of Special Functions that are not representable as Generalized

Hypergeometric Functions.
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Inability to integrate an expression at stage two is mainly caused by

the fact that the argument, the number of parameters and the functional factor of

the Generalized Hypergeometric Function do not meet the proper requirements and

restrictions that the integration formula imposes.

For example, to apply formula (16) of Chapter 1, to an expression,

the conditions

Re(s) > 8, m+k < n+1, for integer values of m, k and n,

should be satisfied.

The "intermediate steps" policy we selected to follow in stage one

is obviously of great help here and it obviously has support of very practical

value. For example, whenever we utilize a function for our table look-up

involving the Whittaker function MIs, (Z) and not a pFq(z) we can

automatically handle all special cases of Mi,(z) too.

The key point in the formulas that do not involve Generalized

Hypergeometric Functions - the "exception formulas" - is, to provide the most

general representation in the table look up. Failure to do that will result in

not finding integrable cases. This is a situation that occurs when the input

expression contains a Special Function which is reducible to some other of a

lower level. Since, we do not want to involve any reduction procedures in the

first two stages, it becomes necessary to represent the "exception formulas" in

their most general representation (even if mathematically they are equivalent).

General formulas at the Generalized Hypergeometric level are also

incorporated in the design, for cases with finite intervals of integration [111.



39

Notice, however, that stage three is absolutely necessary and is

utilized in every single one of the above mentioned cases. The incorporated

f ormulas ment i oned i n the except i on cases are st i I I very general and consequen t I y

their outputs are even more so. Figure two below depicts the new version of

figure one, describing the scheme in a more precise fashion.

LEVEL II.

INTERMEDIATE

LEVELS.

1~
I '~

1~.-

I S
LEVEL I. -- > Fl

II tI I
IGENERALIZED I J IGENERALIZED
IHYPERGEO1ETRICI---------- ; 44HYPERGEOIETRICI
IFUNCTIONS - IFUNCTIONS I

/ -
I IIf

SPECIAL 1
FUNCTIONS I

SPECIAL
PECIAL IAND/OR
UNCTIONS ] ELEMENTARY |-

FUNCTIONS

Figure 2.

Finally, we will consider the role of the different integral transform

properties.

As we mentioned earlier, our general policy requires that any proper ty
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should be appli cable at the Generali zed Hypergeometr i c Funct ion level. In order

to be more precise and incorporate the exceptions of the last paragraph, the

different integral transform properties should be generally applied in the last

level of generalization of the Special Functions, just before we are to look up

the table and integrate. This policy changes only in cases where such a

postponment of the application of the Integral transform property until stage

two, causes irreparable damages in our procedure at stage two. Therefore, the

Integral transforms properties have been considered in two types.

1. Properties that can be applied in substage 2.1,

independently of what kind of Special Function(s)

the input expression contains.

2. Properties that have to be applied after stage one

for certain Special Functions.

Thus, for example, all the well known properties such as the "scale

property" applicable to almost any integral transform is a type one property.

Properties of the second type cannot be applied after stage one for certain

Special Functions and our scheme is unable to proceed successfully to stages two

and three. For example, the property

L[f(asinht)] - J p(au)g(u) du (112)

where g(p) - LEf(t)], cannot be applied after stage one, for the Bessel function

J,, as in, for example,

Jg(asinht) e-Pt (113)

since after the completion of the first stage we get



41

a2

SFII 1; - -- sinh2 te-pt (114)
4

Expression (114) cannot be integrated since our table does not contain any

formulas with such functional arguments while it is too late to apply property

(112).

This example could be solved by two recursive calls to our scheme

(fig. 1). First, by calling the scheme as described for the Laplace Transforms,

and second by calling the same scheme in which the Laplace Transforms properties

and Integration formulas have been substituted with Hankel Transforms properties

and Integration formulas [181. Namely, our scheme will work as follows:

Given the integral

Jgtoasinht)e-Pt dt (115)

We first apply property (112) and we get

,(J(au)g(u) du (116)

where

g(u) - Jle(t)e-ut du (117)

The first (Laplace transforms) call to our scheme (fig. 1), for the expression

(117), gives

g(u) M (u2+1)-1/ 2  (118)

The second (Hankel transforms) call to our scheme for the expression (116) given

the result (118), provides
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r ( (v+1)/2) r (-v) (r (v/2+1)) 2  ay

16v/2a- -----------------------/y_ 1/2 J 12(~)
2  (119)

r(v+1)r((1-v)/2) 2

r(v)P(v/2+1)F(1-v/2) ay ay
+ a-1 /2 -__________----- y1/2 j v/2 (--) J-v/2 (--)

P(v+1) 2 2

Similarly, the Laplace transforms property

tv-1f (t0)e-Pt dt (120)

-v/2 fuv/2j (2u1/2p1/2) g (u) du

where

g (u) - rft 8 -ut dt (121)

ie a type two property.

Thus, the integral

t-f J(t-l)e-Pt dt (122)

is solved again by two callIs to our scheme.

The first call, a Laplace transforms call, gives

g(u) - fZtJ1(t)e-ut dt - (u2+1-3/2  (123)

and the second call, a Hankel transform call, provides the final result

1/2
------- y3/ 2 J1(y/4)KI(y/4) (124)

2r(3/2)

The Laplace property (125)

tf (t2)e-Pt dt (125)

- z-1/2 -1/2 uv-2e-1f4 p 2u 2Ov(pu)g (1/2 u-2 ) du
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where

g (p) - f (t) e-Pt dt (126)

Is also a type two property.

On a first examination, a program that can take the Integral

Transforms of approximately fifty Special Functions would imply it would be

necessary that quite a large number of formulas be incorporated in the table

look-up of our second stage. It turns out that relatively very few formulas are

needed. For example, formula (10) of Chapter 1, is applicable to a large number

of Special Functions [161, [31, [193, namely the Bessel functions of the first

and second kind, both Modified Bessel functions, the two kinds of Hankel

functions, also the Struve functions, the Lommel functions, and the Kelvin

functions, the Whittaker, the error and both Incomplete Gamma functions, as well

as to certain products of Bessel functions, for almost all the values of their

indices and for linear as well as square roots of linear functions of the

argument. Furthermore, in cooperation with general formulas of other Integral

Transforms, formula (10) of Chapter 1, contributes in integrating composite

functions like Jg(slnht) and r1 J1 (r1 ), as we have already shown.

Our main source of integration formulas has been the Bateman

Manuscript Project which approximately contains 6000 integral formulas for the

different transforms. Table 6 contains some key formulas for the Laplace

transforms. Table 7 provides some key formulas applicable to both Laplace and K

transforms.
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f@ts-mFn(a,.., am;rl,...,rn: (1t)k)e-Pt dt (127)

s s+1 s+k-1 ki

- I(s)PIsm+kFn(a,...,am ---- '..,-----:rl,r2,...,rn; __-
k k k p

Re(s) > 0, rm+k < n+1, where k,m,n are integers.

S#-YV(xy)e-ax dx (128)

av-pr(p+v) r(;,-v)
-- ---------------------- y-

2p-levr i T/2; vr (p+4/2)

A-V I-V+1 y 2+a2

2Fj [ --- , ----- ; m+1/2; -----

2 2 a2

Re (p) > IRe(v), a > 0

CtM+v-1 5-At 1FI[ pj-xj; 2pj; at] (129)

1FI [ On-On 20n; antle-Pt dt

(p+A)-v-mr(v+m)

FAI v+M; Al-Ol, ... ,#n-9n; 2#1, ... ,21n;

ai (p+A)-l, .. an(p+A)-ll

M- 91+ ... +#n, Re(v+M) > B, A - 1/2(a1+ .. + an)

Table 6.

flp-3/2pFqr a1, ... , ap; b1, ... , bq; -Ax2JK(x)(xu)" 2 dx (130)

- 2 2y112-P ((p+v) /2) r ( (p-v) /2)

p+2Fq[ a, ... ap (p+v)/2, (p-v)/2; #I, ... ,q;4l; My 2 1

p ; q-1, Re(#) IRe vi
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fxv+1/22F1I a, 4; v+1; -X2x2JK (xy) (xy)1/ 2 dx (131)

a 2v+la-fl+f-v-3/2r (v+1)s_1..- _ (y/X)

Re(A) 8, Re(v) > -1

f 4+v-1/2e-ax2
1Fi C 1/2+p-x; 2+1: ax2J Ky (xy) d (132)

- 2p-K-1/2a-1/4- (3s+v+x)/g--

r (2+1) r (2+v+1) 8u2/ (8a)Wk, m (y2 / (4a)

2k - -3p-v-x-1/2, 2m a p+v-a+1/2

Re (p) -1/2, Re (2p+v) > -1
Table 7.

Hence, approximately thirty formulas are sufficient in conjuction with

the other mathematical machinery we have mobilized, to exhaust all entries

(around 500) in both Laplace and K transforms of the Bateman Manuscript.

Actually, only a few of these formulas are needed to cover approximately 88% of

the corresponding entries. Furthermore, numerous other cases can be solved that

are not given explicitly in Bateman's tables. For example, expression (113) of

this chapter does not match any entry of the Bateman's Tables. However, we

succeeded in solving it by calling twice two different general formulas of the

Bateman Manuscript.

However, the potentiality of keeping very few and general formulas

around In the table of our second stage would be of limited value if we were

unable to complete successfully the third stage, the reduction of the Generalized

Hypergeometric Function to some Elementary and/or Special Function(s).
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Chapter 3

THE REDUCTION STAGE

In the reduction stage the Generalized Hypergeometric Function is

reduced, if that is possible, to some Elementary and/or Special Function(s).

Priority is always given to those methods that reduce the Hypergeometric Series

into elementary functions and then to those that reduce to the most common

Special Functions, such as Error, Bessel, etc . The effort in the reduction

stage increases as the number of the series parameters, and subsequently the p

and q values, increase. If the reduction is unsuccessful then the series pFq(Z)

is returned. Therefore, a complete reduction package should also incorporate

schemes for the summation of the Generalized Hypergeometric Functions. In our

thesis we did not extend our research in the "summation" domain. Of course, the

reduction process will try to provide reducible forms of the Generalized

Hypergeometric Series even if the series has a numeric value argument and it has

been guaranteed that the series does not converge.

Example the Generalized Hypergeometric Function

2FjE a, a + 1/2; c; -5W (1)

does not converge according to our convergence rules (see Chapter 2). The

reduction process will nevertheless return:
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1I- c 1
2 P (----

c - 2 a - 1, 1 - c sqrt(6)
---- - - - - -(2)

1-c

2a 2
(- 5) 24 gamma(c)

where Pv, r (z) is the Legendre func t ion.

Similarly, if the argument is symbolic the reduction process will

return an answer assuming proper intervals of validity for the symbolic

references.

We feel that techniques similar to those in our reduction scheme

can be also utilized in order to determine the closed form of a Generalized

Hypergeometric Function with numerical argument. For a very interesting approach

to the problem of series summation consult "A Calculus of Series Rearrangements"

by Gosper 201.

Our approach to Definite Integration undoubtly also shows the strong

interdependence that the problem of Definite Integration has with the problem of

series summation.

In the "reduction" sections we provide our main conclusions and the

necessary theory In terms of theorems, lemmas and corollaries. When necessary,

algorithms and illustrations are provided.
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3.1. GENERAL REDUCTION TESTS

In the general reduction part we perform reductions independent of the

number of parameters.

Given the Generalized Hypergeometric Function pF[ Li; L 2 ; arg] where

Ll - (ai, a2 9..., apI, and L2 a (b1, b29'.., bqI, the following lemmas hold:

Lemma 1. If L - Li A L2 and r - ILl, then

pFqC L1; L2; argl - p-rFq-r[ L-L; L2-L; arg] (3)

The above lemma simply states that common numerator and denominator

parameters can be eliminated with a subsequent subtraction in the subscripts p

and q.

Lemma 2. If -n e Li, n e Z+, then

n aja2...a P

pFqC L 1 ; L2 ; arg] -1- --------- arg + (4)
1 blb2e.bq

n al (al+l) a2(a2+1),...ap (a p+D )
- )---------------------------- arg2 +...

2 bj(b1 +1)b 2 (b2+1)...bq(aq+l)

-n aj (aj+D)(aj+2)... (aj+n-D,... ... a P(a P+D)(a p+2)..0.(a p+n-1)

(- 1 )f ( )-------------------------------------------------------
n b 1 (b+1)(b+2)... (b+n-1)... ... b (bq+D (bq+2)... (bq+n-D

argn

Hence, the Generalized Hypergeometric Function reduces to a

polynomial.
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Proof It can be easily seen that all terms after the nth one in the

hypergeometric series expansion are zero. Hence, the series terminates and a

polynomial is derived.

Corollary 2.1. If n in lemma 2 is zero the Generalized

Hypergeometric Function reduces to one.

Lemma 3. If n e L2 , n .Z- U (W} then the Genera;ized Hypergeometric

Function does not have any meaning.

Proof The denominators of the series expansion will contain zeroes

after the nth term,

Of course lemma 3 always holds as long as no cancellation of the

parameter n occurs. Hence, lemma 1 should always be applied first. This is

not always true for lemma 2 over lemma 3.

Lemma 4. The polynomial expression (4 is an instance of some

Orthogonal polynomial(s) according to the following cases:

a. If 1L21 - 2 and IL11 - 1 then expression (4) reduces to one of

the fo!lowing polynomials:

i) Tchebichef, ii) Legendre, iii) Gegenbauer, iv) Jacobi.

b. If IL11 * IL2! - 1 then expression (4) reduces to one of the

following polynomials:

1) Hermite, ii) Laguerre.
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c. If 1L11 a 2 and IL21 - 0 then expression (4) is also reducible to

one of the polynomials mentioned in case b.

The three cases msntioned in lemma 4 will be investigated and

discussed in the section concerned with special reduction tests, where our

special reduction techniques will be used.

Of course, someone might suggest that lemma 4 and its anticipated

discussions are redundant because lemma 2 itself is sufficient to successfully

reduce the Generalized Hypergeometric Function. This is actually not true for

th~e following reasons:

1. If the polynomial p2 (x) is returned instead nf its expansion, the

reader becomes InstantI y aware that he is now dealing w i th a par t i cuI ar

polynomial, the Orthogonal polynomial of Legendre, and not an arbitrary one.

2. If, say, the Tchebyshev polynomial Tn(x), n e N, is returned

instead of its expansion we are certain that no "blow up" is likely to occur as a

result of exceeding the storage capacity of a machine. Tn(x) will be returned

very quickly. Its expansion for a large n, n e N, will either exceed storage

capacity or a huge polynomial will be returned which is difficult to comprehend

and further manipulate (i.e. differentiate, factor etc.).

For those cases in which it is not possible that an Orthogonal

polynomial be returned and in which n is relativsly large, our implementation

will first return a warning and then return the Generalized Hypergeometric

Function instead. It will take chances and try to return the expansion only if

ordered to do so. However, such a situation is very unlikely to occur in any

"real" problem.
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Lemma G. If a numerator parameter of the General ized Hypergeometric

Ser i es p Fq(z) exceeds a denominator parameter by a positive integer, say k, then

the series pFq(z) can be expressed as the sum of k+1 p-Fl(z) 'e.

Specifically, the following relation holds:

pFqC a1+k, a2 ,..., ap: a1, b2 , b39 ''', bq; zi . (S)

k
(I)
S

p-iFqiI a2 , a3,..., ap; b2 , b3 9 .9 bq; zi +

k a2a3...ap
(I-----------
1 ajb2b3...bq

z p-4Fq4ICI a2+1, a3+1,..., aP+1; b 2+1, b3+1 9 ... ,bq+1; zi +

k a2 (a2+1)a3 (a3+1)...aP(aP+l)
( --------------------------
2 a1(aj+l)b2(b2+1)...bq(bq+l)

z2plFq. iCa2 +2, a3+2, ... , aP+2;b2+2,b3+2, .. , ebq+2; zi +

k a2 (a 2+1)... (a 2 +k-2) (a 2+k-1)... .ap(ap+D ... (aP+k-2) (ap+k-1)

() ------------------------------------------------------------- zk
k a1(a1+1)...(a1+k-2)(a 1+k-1)... ...bq(bq+1). (b+k-2)(bq+k-1)

p.iFqi( a2+k, a3+k, ... ap+k; b2+k, b3+k, . bq+k; z)

Proof By induction.

Lemma 5 constitutes a surprisingly useful rule, which is incorporated

in the first reduction phase. Such a series splitting, though it does not

actually fully reduce a pFq(z), simplifies the reduction by decreasing the p and

q values. We illustrate our ideas in the example 1.

Example 1. Consider

(6)t3 Jo(tl/2)2 e-pt

after stages one and two have been completed, we get
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SP- 4 
3F3C 1/2, 1, 4;1, 1, 1; p- l (7)

now, at stage three and after a trivial general reduction rule, expression (7)

becomes

6P-4 2F2[ 1/2, 4; 1, 1; -p-1] (8)

then applying our general "splitting" rule, (8) reduces to

6p-4  
1IF1 C 1/2; 1; -P-11 - 3/2 p-1 iF1 [ 3/2; 2; -P-4i + (9)

+ 9/16 P-2 1F1 [ 5/2; 3; -p-"J - 5/96 P-3 1F171 7/2; 4; -p-11J

which ultimately yields:

6P-4 -1/2 p- [ 1(-1/2 p-1) + 3/2 M-1/2,1/2(-P- 1 ) + (10)

+ 9/16 P- 2 (-p)3/2 Mi,1(-p-1) - 5/96 P- 1M3 /2 ,3 / 2 (-P-1 )

where I,i is a Whittaker function.

We proceed with the algorithm GR for the general reduction part.

Algorithm GR. Given
pFq( L1; L2; zI (11)

Step_1. Find the intersection L, of the two parameter lists L1 and

L2 . If it Is nonempty substitute (11) with

p-jLFq-jLj( L1-L; L2-L; zI (12)

Step 2. If any numerator parameter, exceeds a denominator parameter

by a positive Integer k, then return k+1 piFq-1(z) 's to be processed by

Algorithm GR.

Step 3. Search for a nonpositive integer n in Li list.

Step 4. Search for a nonpositive integer n' in L2 list.
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Step 5. If n, n' found then

If n n' then return the

Generalized Hypergeometric Function.

else

If n' only found then return the

Generalized Hypergeometric Function.

Step 6. If 1L11 - 2 and 1L2 1 - I

or Ilil a -1L2 1

or IL1iI -2 and IL2 -10

then dispatch to the special reduction tests algorithmn,

else rtturn a polynomial of degree n according to the formula (4).

Step 7. Return the Generalized Hypergeometric Function.
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3.2. SPECIAL REDUCTION TESTS

The Special Reduction tests constitute the second phase of the

reduction stage. Here, different algorithms are performed which are dependent on

the values of p and q of the Generalized Hypergeometric Function. The general

idea in this phase is to divide the set of Special and Elementary Functions into

subsets depending on the p and q values that their series representation has.

Therefore, algorithms are constructed according to the particular subset of

Special and Elementary Functions and the available mathematical machinery

applicable to the subset. It should be noted that these algorithms search first

to return Elementary or common Special Functions. In case that they cumpletely

fail, the series is returned. The most important tools here are differentiation,

the different transformations such as linear, quadratic etc. and the contiguous

functions relations. Differentiation and contiguous functions relations can be

utilized In any subset Independently of the values of p and q. However, this is.

not true for the different transformations (linear, quadratic, etc.). A

characteristic of the differential and contiguous relations is their ability to

transform the Generalized Hypergeometric Functions into some new ones which are

associatesi of the old. Hence, differential or contiguous relations are

utilized whenever parameters in the Generalized Hypergeometric Function differ

with the corresponding series of our table by some integer quantity. Similarly,

transformations (quadratic, cubic etc.) are applicable to a Generalized

1 The series pF0 [ a1+m1, ... , ap+mp; b1+n1, ., bq+nq; z for mi, n i w
1, 2, ... ,p and j = 1, 2, ... , q integer numbers, are called the associates
series.
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Hypergeometric Function whenever some particular relationship holds among its

parameters.

In the second phase, reductions are easy for the cases gF(6 (z), (F(z),

1Fg(z), and the difficulty increases significantly for higher p's and q's. Ue

have been mainly concerned with the Confluent Hypergeometric Functions reduction,

jFj(z) ,and the Gauss Hypergeometric Functions, 2FI(z), that include in addition

to certain important Special Functions, the Elementary Functions.

3.2.1. EXPONENTIAL BINOMIAL AND BESSEL REDUCTIONS

Lemma 6. For z e C relation (12) holds

Z2 zn

eFe[ ; ; zi - 1 + z + -- + ... + -- + ... - ez (12)

2!n!

Hence, in case of 8Fiz) as lemma 6 indicates, we have all the

exponential, trigonometric and hyperbolic functions, since all of their series

expansion is of type (12).

Lemma 7. For any a, z e C relation (13) bwlds

a(a+1) (a) n

1F0( a; ; zi - 1 + az +------- z2 + ... + ---- zn + - (1-z)-a (13)
2! n!
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thus category 1Fg(z) includes the Binomial functions.

Lemma 8. For any v, z e C relations (14), (15) hold

F11( ;v+1; -z 2/4J - (z/2)-vP (v+1) J, (z) (14)

FC [i v+1; z2/41 - (z/2)-v (v+1) Iv(z) (15)

particularly for v equal to 1/2, -1/2, 3/2, -3/2 relation (14) - and similarly

(15) - reduces to the following relations

SFI ; 3/2; z2 /4J 2 17(3/2) 1-1/2 Z- 1sin(z) (16)

OFjC ; 5/2; z2 /41 a 4 P(5/2) r-1/2 (Z- 1  sin(z) - cos(z)) (17)

8F1I ; 1/2; z2 /41 - 7(1/2) r-1/ 2 cos(z) (18)

OFI I ; -1/2; z2 /41 - -1/2r(-1/2)-1/ 2 )z(z-Ccos(z) + sin(z)) (19)

In particular, the following important theorem holds

Theorem 1.1 The Bessel function J(z), is expressible in finite

terms by means of algebraic and trigonometric funcions of z, when v is half of an

odd integer. Namely, the following relations are true

2 Ln/2J (-1)r(n+2r)!

Jn+1/2(z) - (--)1/2 [sin(z-nr/2) 2 ------------------ (20)
Irz r-0 (2r) !(n-2r)l (2z) 2r

I,(n-D)/2 (-,) r (n+2r+1) !

+ cos(z-nr/2) 2 ------------------------ )
r-8 (2r+1)! (n-2r-1)! (2z) 2r+1

2 Lp/Zj (-1)r(n+2r)!

J-n-1/2(z) (--)1/2 (cos(z+ni/2) 2 ------------------ (21)

rz r8 (2r)! (n-2r)U 2z)2r

Based on the work of Lommel, Studien uber die Bessel'schen Funktionen(Leipzig,
1968), pp. 51-56.
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V~n-D)/2j (-l)r (n+2r+l) !
- sn(z+nr/2) Z------------------------I

rag (2r+I)! (n-2r-1) ! (2z) 2r+1

However, when v does not have such a value, then the Bessel function

Jv(z) is not so expressible. This fact has been established by Liouvi-lle's

theorem which we describe next.

Theorem 2.1 The Bessel's equation for functions of order

nontrivial solution expressible in finite terms bu means of

transcendental functions, if 2v is not an odd integer.

v has no

elementary

3.2.2. CONFLUENT HYPERGEOMETRIC FUNCTION REDUCTIONS

Lemma 9. The following relation holds

1F1I a; c; zi ez 1F1I c-a; c; -z] (22)

The above

transformation.

linear transformation is also known as a Kummer's

Lemma 18. Given jFj[ a; c; zi such that a-c is an integer number

then 1F1( a; c; z) is reducible to the exponential or the Binomial or the Error

or the Incomplete Gamma function.

1 Journal de Math. VI (1841).
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Proof We distinguish the following cases:

1. If a-cuB, then

1FI [ a; c; zi 1FC Ia; a; z - F ; ;z - ez(23)

2. If a-c is a positive integer, then from lemma 9 and lemma 2 we

get:

since c-a

1FI[ a; c; zi u ez F1 [c-a; c; -zi - ez (I+z)a-c

is a negative integer.

3. If a-c is a negative integer, we distinguish the following cases:

3.1. If c 1 I then a must be 8. Hence, and according to the

Corollary 2.1

1F1[ 8; 1; zI 1 (25)

3.2. Let us assume now: a-c - -m, m - 1,2,3,... , then we proceed

with the following inductive argument:

Base: If c-a-i, then

1. If a-1/2 and c-3/2 then because

erf(x) - 2r-1/ 2x 1F1 [ 1/2; 3/2; -x 2]

it follows that IF1I a; c; zl reduces to the Error Furction.

(26)

2. If a#1/2 and/or c*3/2 then because

uy(a, x) alxa 1FI a; a+1; -x] (27)

holds true, it follows that 1F1 [ a; c; z reduces to the Incomplete Gamma

function.

Assume now that for: c-a * m, IF1I a; c; zi - IF1 ( a; a+m; zi

reduces to the Error or the Incomplete Gamma function. We will prove that this

Is also true for: c-a - m+1. (28)

-(24)



59

Utilizing the contiguous function relation:

(a-c+Di) FjC[ a; c; zi - a IF1I a+1; c; zi + (c-i) 1F1I[ a; c-1i; zi 0 (29)

and substituting (28) into (29) we get

1F1 [a; a+m+i; zi - -a m-1 Fi[a+l1;a+m+; zi + m-I (a+m) 1F1  a;a+m; zI (30)

thus the right hand side of expression (30) is expressed as a linear combination

of two other Generalized Hypergeometric Functions which both have the property of

having: c-a - m and for which case our induction hypothesis is valid.

Corollary 10.1. For any complex a and nonnegative integer m the

following relation is true

1F1 (C a; a+mi; zi (31)

m-1 (a+1D(a+2) ... (a+m-1)

( ) -------------------- FI[ a; a+1; zi -

0 (M-I)!

m-1 a(a+2)... (a+m-i)
( )---------------- 1F1 ( a+I; a+-2; zi +
1 (M-i)!

m-1 a(a+i)(a+3)... (a+m--)
( ) --------------------- IFI( a+2; a+3; zi -
2 (M-i)!

m-1 a(a+i)(a+2)... (a+m-2)
(-1m-1i ( --------------------- FI2[ a+(m-1); a+m; z]

M-1 (M-)!

Proof Relation (31) can be easily proved by induction on m, given

relation (29).

By comparing relations (26) and (27) we can see that

erf(x) - 1/2 *y(1/2,x2) (32)
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Hence, the Error function is an instance of the Incomplete Gamma

function. Therefore, our reduction procedure should be able to return the Error

functions instead of the Incomplete Gamma function, whenever this is the case.

Lemma 11 and lemma 12 along with lemma 16 complete the reduction for the

Incomplete Gamma and the Error function cases.

Lemma 11. For m and n nonnegative integers the following relations

hold:

1. For m > n,

1Ft [ 1/2+n; 3/2+m; xl -

(3/2)m-n (m-n+3 / 2)n dn d'"-n
(-I)m-n_-------------------_---___ _x -x 1F1 ( 1/2; 3/2; x II

(1)M-n(1/2)n dxn dxm-n

2.

1F1C 1/2-n; 3/2+m; x] -

(3/2)m ex dn dm
(-)m ---- __-______-__--_- .m+n _.. .e-x 1F1C 1/2; 3/2; xl]I

(1)m (1+m)n xm dxn dxm

3. For n > m,

1F1 1 1/2-n; 3/2-m; xl

ex xm dn dm
(-)M .._._..___.._.___ e-x n-1/ 2 ___ ,1/2 1F1C 1/2; 3/2; xII

(1-m) n (-1/2)m dxn dxm

of Chapter

of Chapter

Chapter 2.

Proof Relation (33) can be easily proved from relations (34) and (37)

2. Likewise, relation (34) can be deduced from relation (37) and (38)

2, and finally, relation (35) follows from relations (36) and (38) of

(33)

(34)

(35)
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Lemma 12. Given the conditions of lemma 10 and furthermore assuming

a and c are not symbolic quantities then 1F1[ a; c; zi is reducible to the

exponential or the Binomial or the Error functions.

Proof The proof is a consequence of lemmas 18 and 11.

Particular cases of the Confluent Hypergeometric Functions set are the

Orthogonal Polynomials of Hermits and Laguerre as the following lemma describes.

Lemma 13. The General ized Hypergeometric Function 1F1 l -n; a; x

reduces for any neZ+, aeC into Hermite or Laguerre polynomials.

Proof From relations (36), (37) and (38)

He2n(x) - (-2 )n (1 2 )n 1FI[ -n; 1/2; x2/21 (36)

He2n+1(x) (-2 )n (3/2)n x 1FI[ -n; 3/2; x2/21 (37)

n+a
Lna(x) ( ) IF1C -n; a+; xl (38)

n

we can easily deduce the assertion.

If we compare (36) and (37) with (38) we can conclude that Hermite

polynomials are particular cases of the Laguerre polynomials, particularly the

following relations hold:

He2n(x) - (-2)n n! Ln,-1/2(x2/2) (39)

He2n+1(x) - 2)n n! x L1/2,n(x2/2) (48)
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The reader might have expected by now that a lemma similar to lemma

11, -holding for the Error function, should have been presented here to increase

the reduction capabilities to Hermits polynomials. Of course we could have

proved similar to lemma 11 reduction relations for the Hermite polynomials but we

would not have increased at all the capabilities of our reduction because

differentiation of Hermite polynomials provides Laguerre ones. Hence, and after

a little inspection of the expression (38) the redundancy of such a lemma here is

obvious.

Bessel functions are also particular cases of Confluent Hypergeometric

Functions as lemma 14 states.

Lemma 14. The following relation is true:

1F1( a; 2a; 2z1 - ez Fj[ ; a+1/2; z2/4] (41)

In other words, a Confluent Hypergeometric Function 1F1 ( a; c; zi

reduces to a Bessel type of function if

c a 2a (42)

Theorem 3. Given an integer number a then the Confluent

Hypergeometric Function IF1C a; c; zi reduces to the exponential the Binomial or

the Error or the Incomplete Gamma functions.

Proof Assume a - m, where m a 1,2,3,... then

1F1 L( m; c; zi - 1F1I m; (c-m)+m; z (43)

expression (43) and lemma 9 give:

1 F1 [m; c; zi - ez 1F 1[ c-m; (c-m)+m; -zJ - ez iF1 a';c';-zJ (44)
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where a'- c-m, c'- (c-m)+m and it is a'-c' = -m. Hence, lemmas 10 and 14 apply

to the right hand side of relation (44) and the lemma is proved.

Lemma 16. Any Confluent Hypergeometric Function F1L[ a; c; zi can be

expressed as a WJhittaker function M, (z).

Proof This is obvious from relation (45).

MKA(z) - z#+1/ 2 e-z/ 2 
1FI [ 1/2+p-a; 2#-+1; zI (45)

Hence, any Special Function which is in particular a Confluent

Hypergeometric Function is an instance of the Whittaker function M., (z) .

Algorithm "1F1-Red" depicts our conclusions of the present subsection.

A I Gor i thm 1F1 -Red. Gi ven 1F1( a; c; z]

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Step 6.

Step 7.

If

If

If

If

2a * c then return to 0FI cases

a - c Z then go to Step 7

a - c - 0 then go to gen-red algorithm

a - c > I then apply transformation (22)

and go to Step 6

If a and/or c not numeric quantities

then return the Incomplete Gamma function 7 (a,x)

else return the Error function Erf (z)

If c is 1/2 or 3/2 then return the Hermite polynomial

else return the Laguerre polynomial

If a e Z then apply transformation (22)

and go to Step 3

else return the Whittaker function M,, (z).
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3.2.3. GAUSS HYPERGEOMETRIC FUNCTIONS REDUCTIONS

In this subsection special reductions are performed that lead to

Elementary Functions as well as to the Special Functions of Legendre, Incomplete

Beta and Orthogonal polynomials of Tchebichef, Legendre, Gegenbauer and Jacobi.

The machinery that is utilized for reduction is the contiguous function

relations, differentiation, and different transformations (linear, quadratic

etc.)

3.2.3.1. THE LIMIT-REDUCTION METHOD

One of our methods in accomplishing reduction is the "limit-reduction"

method. Our method works in the following fashion:

Algorithm I.

Given the hypergeometric function:

2Fj [ 8, b; C; zA (46)

Step 1. Detect that the hypergeometric function (46) is the limit of

some other hypergeometric function, as far as their parameter part is concerned,

which other hypergeometric function can be processed by a quadratic

transformation. Namely, a relation
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limit 2F1( a', b'; c'; z'J - 2F1[ a, b; c; z'] (46A)
rl->I1

rn->In

holds, where ri i - 1, 2, ... , n are quantities involved in the parameters

a', b' and c' and furthermore

2F1C a', b'; c'; z'J - f(x) 2Fl[ a'', b''; c''; z'J (46)

is the quadratic transformation, where z and z' are assumed arguments of the

variable x. (Relation (46B) is not any particular quadratic transformation, it is

just a general "picture" of any quadratic transformation which help us express

the aigorithm in a better way.)

Step 2. Take the same limits on this quadratic transformation. Thus

take

limit 2F1C a', b'; c'; z'J (46C)
rl->11

rn->In

limit f(x) limit 2F1C a'', b''; c''; z')

r1->]j r1 ->11

rn->ln rn->in

-: g(x) 2F1[ a''', b'''; c'''; z'1

Step 3. Call the "reduction algorithm" to process the hypergeometric

function:

2Fi a''', b'''; c'''; z'l (46D)

and multiply the result with g(x).

Step 4. In case that z # z' perform the appropriate adjustment in

the result of step three and thus provide the reduced result of the

hypergeometric function (46).



66

Of course, "limit-reduction" is applied whenever we are certain that

the second call to the reduction algorithm at Step 4, will be successful. The

above method is utilized to reduce the hypergeometric function into Binomial or

Elementary Functions. We illustrate this method with a simple example.

We are given the hypergeometric function:

2FI[ 3/4, 5/4; 1/2; z23 (47)

Step 1. It is true that:

limit 2FIC a/2, 1/2+a/2; b+1/2; 22 = 2F1,[ 3/4, 5/4; 1/2; z2] (48)
a->3/2
b->8

therefore the following quadratic transformation is applicable

2FI( a/2, 1/2+a/2; b+1/2; z2/(2-z) 23 - (1 - z/2)a 2F1( a, b; 2b; zI (49)

Step 2. We next take the limits of relation (49) and we get

limit 2 F1( a/2, 1/2+a/2; b+1/2; z2 /(2-z) 2] (SO)
a->3/2
b->8

- limit (1 - z/2)a 2F1C a, b; 2b; zi
a->3/2
b->8

- (1-z/2)3/2 2F1 C( 3/2, 0; 8; zI

Step 3. Processing of the right hand side of the expression (50) by

the Reduction algorithm we get

2-z
(------)3/2 (51)

2 (1-z)

Step 4. And finally adjusting the arguments we have
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1 5
--------- + --------- (52)

6(j+z)3/2 rS(1-z)3/2

We next pay a closer look for the above proposed "limit-reduction"

method.

Lemma 17. Given the hypergeometric function 2F1 [ a, b; c; zi, then

there exists a quadratic transformation if and only if the numbers

*(1-c), *(a-b), *(a+b-c) (53)

have the property that one of them equals 1/2 or that two of them are equal.

Lemma 17 constitutes the criterion for accepting a given

hypergeometric function for further manipulation by several reduction methods

involving quadratic transformations. Of course, the limit reduction method is

one of them. As it finally turns out, there is always a way to reduce a

hypergeometric function which meets the requirements of lemma 17.

A table of all the existing quadratic transformations is provided in

the Appendix 2.

Lemma 18. The following relations hold:

z2

2Fi a/2, -a/2; 1/2; ------ J (1 - z)-a/2 (54)
4(z-1)

1-a 1+a Z2 2(1-z)-a/2

2FI [---3---11/2;*------ I ----------- (55)
2 2 4(z-1) 2-z
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8+1 Z2 (2-z)a

2 F1 [fa/2, ---; 1/2; ------I - -------- (56)

2 (2-z)2 2a (1-z) a

c-1

2Fi c/2, ---; c; 4z(1-z)] u (1-z)l-C (57)
2

c+la -Z)I-C
2F1[ c/2, ---; c; 4z(1-z) -------- (58)

2 1-2z

2F1C c-1, c-1/2; 2c-1; 4z/ 2 (1+z)1/ 2 ((1+z) 1 / 2 + z1/2)-2 (59)

- ((1 + z)1/2 + zl/ 2 )2c- 2 ( 1+z)1-c

4z/2(1+Z)1/2

2Fi c, c-112; 2c-1;---------------1 (60)

C[(1+z)1/ 2 +z/212

- (1+z)-c(z1/2 + (1+z)1/2)2c

Proof Utilizing the following quadratic transformations

Z2

2F1 I a, b; 2b; zi u (1-z/2)-a 2FI( a/2, 1/2+a/2; b+1/2;-------1 (61)

(2-z)2

2 F1 [ a, 1-a; c; zi * (1-z)C-12F1 [ c/2-a/2, (c+a-1)/2; c; 4z(1-z)J (62)

2F [ a, 1-a; c; -zi - (1+z)c- 1 ((+z)1/ 2 + zl/2 2 - 2 a- 2 c (63)

4z1/2(1+z)1/2

2Fi c+a-1, c-1/2; 2c-1;---------------1

[(1+z)1/2+zl/2] 2

we can deduce the following relations

Z2
limit 2F[ a/2, b-a/2; b+1/2; ------J 1 (1 - z)-a/2  (64)
b->0 4(z-1)
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1-a+2b 1+a Z2 2(1-z) (1-a)/2
limit 2FI I----, --- ; b+1/2; ------ I ----------------- (65)

b->9 2 2 4(z-i) 2-z

a+1 z (2-z)a
limit 2FC a/2, --- ; b+1/2; (---)2) -------- (66)

b->8 2 2-z 2a(1-z)a

c+a-1

limit 2F1[ c/2-a/2, -----; c; 4z(1-z)1 - (1-z)1-C (67)
a->8 2

c-a+1 (1-z)-C
limit 2F1[ c/2+a/2, -----; c; 4z(1-z)] - -------- (68)

a->8 2 1-2z

4z/2(1+z)1/2
limit 2F,[ c+a-1, c-1/2; 2c-1;---------------] - (69)

a->8 ((1+z)1/2+zl/2)2

M ((1+z)1/ 2 + z 1/2) 2 c- 2 (1+z) 1-c

4z1/2(1+z)1/2
limit 2Fj[ c-a, c-1/2; 2c-1;--------------] (70)

a->8 ((l+z)1/2+zl/2)2

a (1+z)l-c(zl/2+(1+z)1/2)2c

Hence, relations (54) through (69) hold.

As it should be noticed, Lemma 18 is nothing more than the application

of Algorithm I, into the elligible subset of quadratic transformations for limit

reduction. Equivalent or special cases for some of the relations (59) through

(60) are given in the Appendix 3, which has been selected from the existing

literature [31, [211 and [22).

Lemma 18 can be further generalized by incorporating into it

differential relations. Thus the hypergeometric function

2F1 [ a, a+1/2; 3/2; zI (71)
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by means of the differential relation

(c-a) n (c-b) n
---------- - z)a+b-c-n 2FI a, b; c+n; zI (72)

(c) n

dn
.--- [(1 z)a+b-c 2 FC a, b; c; zl

dzn

can be reduced to the hypergeometric function

2F[ a, a+1/2; 1/2; z (73)

which can be further processed successfully by relation (56).

Before we proceed to any generalization of Lemma 18 we will use

through Lemmas 19, 28 and 21 to investigate cases in which we attempt to use

differential and contiguous function relations to achieve reduction to a desired

hypergeometric function in the way we did in our previous example.

Lemma 19. Given the hypergeometric function

2FL m/n, b; k/l; z] (74)

then under the following conditions the relation

m k
2(- + x) - -+y form, k, x,yeZandn, I eZ- (0) (75)
n I

cannot be satisfied

1. For any y and one of the following conditions

a) 21 ~I k and n 1 m

b) 211k and nn~l m

2. y odd, n I m and 21 k
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Lemma 20. Given the hypergeometric function (74) then under the

following condition relation (75) is satisfied.

u Is even and one of the following conditions holds

a) 21 k and nim

b) 21un and 21ln I k-m.

Lemma 21. Given the hypergeometric function (74) then relation (75)

is satisfied or not according to the following criterion:

If y is even and if 21 ~I k and n ~I m then (75) is satisfied

depending on whether Zn divides kn - 21m or not.

Lemmas 19, 20 and 21 can be easily proved by means of elementary

number theory.

Hence, lemmas 19, 20 and 21 indicate when it is effective to use

differentiation and/or contiguous function relations to a hypergeometric function

in order to match a hypergeometric function of the type:

2Fi[ a, a-1/2; 2a; z (76)

Of course similar criterions can be found for cases like

2FI [ a, a-1/2; 3a; zi, 2F, [ a, a-1/2; 4a; zI (77)

and so on. However, we are not interested in such eriter ions for our present

problems.

Lemma 22. Any hypergeometric function of the form

2F [ a+m, -a+l; c; zi m, I e Z, a, C, z e C (78)

can be represented in any of the following ways
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2F1 [ a'+n, -a'; c; zI (79)

2Fji[ a", -a"+n; c; zJ (88)

where a', a" eC and ne Z.

Lemma 23. For m, n e N a, b, z e C the following relations hold:

(n-m+1/ 2)m(1/2)n-M

2 FI[ a+m, bI 1/2+n; zJ -------------------------------------------- (81)

(-1) m(a) m(I /2+n-m-b) m(I /2-a) n-m (I/2-b) n-M

dm dn-m
(1-Z)1-a --- (1-,z)n-b-1/2-----(1-z)a+b-1/2 2F[ a, b; 1/2; zll

dzm dzn-m

where we assume here m < n

1

2F1 Ca-m, b; 1/2-n; zi ---------------------- Zn+1/2(1-z)m+1/2-b-n (82)
(/ 2-n).(1/2-n+m) n-m

dm dn-m
---C(1-z)n+b-1/2 -----[Z-1 /2 

2F1 [ a, b; 1/2; zl]]

dzM dzn-m

where here assume m n

(1 /2) n

2 FIC a-m, b; 1/2+n; z - -------------------------------------------- (83)

(1/2+n-a)m(1/2-a)n (1/2-b)n

z1/2+a-n (1-z)m+n+1/2-a-b

dm dn
--- [Izn+m-a-1/2 --- E(1- a+b-1 /2 2FI [ a, b; 1/2; zll1

dzm dzn

1 dm

2F1C a+m, b; 1/2-n; zi ---------------- zI-a --- [ za+m+n-1/2 (84)

(a)M(1/ 2 -n)n dzIn
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dn
---[ z-1/ 2 

2F[ a, b; 1/2; zll

dzn

(1/2)n

2Fi a+m, b; 1/2+n; zi ----------------------------- (1 - 2 )1+n-a-m (85)

(-D)m (a+m-n) n U/2-b) n(a) M-n

dn din-n
---[(1-z)S+-l z1-a-----za+m-n-1 2Fi a, b; 1/2; zlli

dzn dz-n

where n i m

1

2F1 [C a-m, b; 1/2-n; zi -------------------- zn+1/ 2 (1-z)1/2-b (86)
(1/2-n0n(/2-a)M-n

dn din-n

--- [ za (1-z)m-a-----c zm-n-a-1/2 (1-z)a+b-1/2 2F1 [ a, b; 1/2; zlJ

dzn dzM-n

where we assume here n < m.

Proof Relation (81) can be proved from relations (31) and (30) of

Chapter 2. Similarly, relation (82) can be proved from relations (32) and (28)

of Chapter 2; relation (83) follows from (29) and (30) of Chapter 2; relation

(84) from (27) and (28) of Chapter 2; relation (85) from (31) and (27) of Chapter

2; and finally relation (86) can be proved from relations (32) and (29) of

Chapter 2.

Taking into account Lemma 22 and provided that b - -a for relations

(81) through (86), Lemma 23 constitutes the generalization of the relations (54)

through (56) of Lemma 18 and the "limit-algorithm".
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Lemma 24. For x e Z, y e Z+ U (1, a, b, c, z E C the following

relations hold:

1
2FiI a, b; c; zi -------------------------------------- (87)

(c) y (c+y-a-x) -g (c-a-1/2+y-x) a-b+1/2+x

z1-c (1 - z)y+c-b

dy dx-Y

--- Izx+a (1-z)-a ----- Iz/2+x-y
dzy dzx-Y

da-b+x+1/2
------------I zc+y-1 (1-z)2a+2x-c-y+1/ 2 2FiE a+x, a+1/2+x; c+y; zlii

dza-b+x+1/2

where a-b+x+1/2 0, x x u 9

I
2Fi [a, b; c; z ---------------------------------- (88)

(c)y (c+y-a-x) _ (a+1/2+x)b-a-x-1/2

Z1-c (1-z)y+c-b

dy dx-Y

--- I zx+a (1-z)-a ----- zc-2a-x-1/2 (1-z)a+x+b-c-y
dzy dzx-Y

db-a-1/2-x
----------- C zb- 1 

2F1C a+x, a+x+1/2; c+y; zlli3

dzb-a-1/2-x

where a-b+x+1/2 < 0, x > u 0

1
2Fi[ a, b; c; z - ---------------------------------------------------- (89)

(c)xn(c+x) _ (c-a-i /2+y-x) a-b+1/2+x

dx dy-x
z1-c (1-z)x+c-b --- ((1-Z)b-c ----- [za+x+1/2 (1-z)c-a-b+y-x

dzn dzu-n

da-b+x+1/
2

-----------czc+y-1 (1-Z)2a+2x-C-y+1/2 2 F1 [ a+x, a+x+1/2; c+y; zlil

dza-b+x+1/2

where y > x > 9, a-b+x+1/2 0
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1
2F1 1 8, b; C; ZI ------------------------------- . (90)

(c) x(c+x) Y-x(a+I /2+x) b-a-1 /2-x

z1-C (1-z)x+c-b

dx dY-x
--- [(1-Z) b-c ----- [zc+y-x-a-1/2

dzx dzy-x

db-a-1/2-x
---------- [lzb-12FI a+x+1/2, a+x; c+y; zll )

dzb-a-1/2-x

where y > x > 0 and a-b+x+1/2 < 0

1

21[ a, b; c; zl --------------------------------- +- (91)
(a-w)u(c) y (c+y+w-a-1/2) a-u-b+1/2

dw dy

--- [ za-c --- [( za-w+1/2 (1-z)w+c+y-a-b

dzw dzy

da-w-b+1/2
------------ zc+y-b-l(1-z) 2 a-2-c-y+1/22 F1 (a-w, a+1/2-u; c+y; z111

dza-w-b+1/2

where u :- -x, a-w-b+1/2 > 0, x < 0, y I0

1

2 FI [a, b; C; zi -------------------------- z1+w-a (92)
(a-w)1 (c)Y (a+1/2-w)b-a-1/2+w

dw dU
--- [za-c ---Ezc+y-a+w-1/2
dzW dzy

db-a-1/2+w
------------[zb-1 2F1( a+112-w, a-w; c+y; z11

dzb-a-1/
2+w

where w :- -x, a-w-b+1/2 < 0, x < 0, y > 0l

Proof Relation (87) is a consequence of relations (32) and (29) of

Chapter 2; relation (88) of (32), (29) and (27) of Chapter 2; relation (89) of

(32), (28) and (29) of Chapter 2; relation (90) of (32), (20) and (27) of Chapter
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2; relation (91) of (27), (28) and (29) of Chapter 2; and finally relation (92)

is implied from relations (27) and (28) of Chapter 2.

Lemma 24 through lemmas 19, 28 and 21, provide a generalization of the

relations (58), (59), (68) and (61) of Lemma 18, and of course to our reduction-

limit algorithm.

As it has been demonstrated, differentiation is one of our tools for

reduction. A careful consideration of the different formulas involving

differentiations shows that it might be the case that differentiation will be

applied "dangerously" many times. That is, we might be differentiating an

expression so many times that the continuously growing expression finally exceeds

the limited storage capacity. It is our responsibility to provide formulas which

utilize differentiation to a minimum; however, this of course does not quarantee

that the aforementioned problem will not arise.

If we inspect the differentiation relations (26) through (33) of

Chapter 2, we conclude that in order to increment a parameter of a hypergeometric

function by one, we should diffferentiate the hypergeometric function once, and

so on.

We establish the "lower bound" for the number of differentiations that

must be applied to the hypergeometric function

2F1C a, b; c; z] (93)

in its reduction to the hypergeometric function

2F1 1a+l, b+m; c+n; zI (94)

where 1, m, n integer numbers, to be:
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1. Imax(l,m,n) - min(l,m,nil, if there exist at least two integers

among I, m and n with different signs.

2. max(Il1, Imi, In}, If all of them have the same sign.

Acceptance of the above lower bound is further supported by the fact

that no linear transformation of expression (93) can provide a better lower

bound.

It is not difficult to see now that all of the formulas in Lemma 23

have accomplished optimal bounds in the number of differentiations applied. This

Is not true for the formulas of Lemma 24, it can be accomplished if we divide the

present cases of Lemma 24 into further subcases (a rather routine and boring task

by now).

Thd following theorem summarizes our results of the above lemmas.

Theorem 1. The following hypergeometric functions reduce to Binomial

and/or Elementary Functions

10

2*

3.

4,

5I

for a e C, I, e, n, r,

2F1 [ a+, -a+m; 1/2+n; z]

2F1C 1/2-a+], 1/2+a+m; 1/2+n; zJ

2Fi, 1/2-a+1, -a+m; 1/2+n; zi

2F, I a+ I, a+m+l /2; n+1 /2; Al

2F1[ a+m1/nI, a+r+1/2; 2a+k/l1; zl

Mi1 , k e Z, n1, 11 c Z - (8)

and under the following conditions

211 1 kj and n1 m 1

(95)

(96)

(97)

(98)

(99)
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or 21 1 -n 1  and n1| k1 -m1

Proof This is a consequence of Lemmas 19 through 24.

The above lemmas and theorem are materialized in the following final

"reduction-limit" algorithm.

Agori!thm 2F1-RL

Given the hypergeometric function

2Fi[ alpha, beta; gamma; arg] (100)

then

using the

Step 1. Standardize the parameters of the hypergeometric function by

Gauss-Euler transformations (168) and (161).

Step2. If alpha - a + 1, beta --a + m and

gamma a i/2+n, where a e C, I, m, n e Z

then go to step 4

Step 3. If alpha - beta + 1/2 is an integer number

then go to step 7

else go to step 12

Staep4. Call algorithm II and standardize the parameters of the

hypergeometric function. Thus the quantities a, I, m, and n will be calculated

and the hypergeometric function put into the form

2F,[ alpha'+m', -alpha'; 1/2+n'; zI (181)
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Step 5. Call algorithm I to process the hypergeometric function

2F1 alpha', -alpha'; 1/2; z (102)

Step 6. Call algorithm III and dispatch to it the result of step S as

well as the quantities m, n, then go to step 11.

Step 7. Call algorithm IV, test the parameters and calculate the

quantities x and y.

Step 8. If "test" in step 7 fails

then go to step 12

else set alpha' to the value of "alpha + x"

StspS. Call algorithm I to process the hypergeometric function

2F11 alpha', alpha'-1/2; 2alpha'; zI (103)

Step 18. Call algorithm V and dispatch to it the result of step 9. as

well as the quantities x and y.

Step 11. Return result.

Step 12. Return fall.

The following algoritm is actually the implementation of lemma 22.

Algorithm II. Given

2Fjl a+m, -a+n; c; z (104)

where m, n are integer numbers, then

Step 1. If the product mn is a nonnegative number
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then go to Step 3

else go to Step 2

Step 2. If Iml > Inl then go to Step 4

Step 3. Set a' equal to a+m and return

2Fi -a'+(m+n), -(-a'); c; z (105)

Step 4. Set a' equal to a-n and return

2F1 ( a'+(m+n), -a'; C; zI (196)

The main function of Algorithm II is to standardize the parameters of

the hypergeometric function and minimize the number of differentiations that must

be performed at a later stage of the limit reduction algorithm. Hence, for

example the hypergeometric function

2F1 ( a+18, -a-950; c; z] (107)

will need at least 1959 differentiations to be reduced to the hypergeometric

function

2F1( a, -a; c; z (108)

However, if algorithm II is initially performed to expression (187) it will

reduce it to

2F a'+58, -a'; c; zI (189)

where a' :- a + 708

thus, reducing the number of the required differentiations to 50.

The following two algorithms called by the major algorithm 2 F1 -RL are

the implementations of the ideas presented in lemmas 19, 20, 21, 23 and 24.
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Algorithm ML!. Given the hypergeometric function

2FI[ a+m, b; 1/2+n; z] (110)

then

Ste1A. If m Is positive then go to step 5

Step 2. If n is negative then go to step 3

else go to step 4

Step 3. If Iml i nl then apply formula (82) and return

else apply formula (86) and return

Step 4. Apply formula (83) and return.

Step 5. If n positive then go to step 6

else apply formula (84) and return.

Step 6. If m n then apply formula (81) and return

else apply formula (85) and return.

Algorithm IV. Given

2F1[ alpha, beta; gamma; z (111)

then

Step 1. Separate the numeric from the nonumeric part in the

parameters of the hypergeometric function (111)

Step 2. If the nonumeric part satisfies the condition 2a - c

then go to step 3
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else go to step 18.

iteP3. Standardize the numeric parts as follows:

Numeric part of alpha a m/n

Numeric part of beta - m/n + r - 1/2

Numeric part of gamma w k/I

and In such a fashion that all fractions m/n, k/l are irreducible.

Step 4. If 21 - n then go to step S

else go to step 6

Step 5 . If n | k-m then go to step 11

Step 6. If 21 1 k then go to step 7

else go to step 8

Step 7. If n m r then go to step 11

eljs go to step 18

Step 8. If n I m then go to step 10

Step 9. If 21n I kn-21m then go to step 11

Step 10. Return "not satisfied".

Step 11. For Y = 8, 2, 4,... find the first integer number x

satisfying the relation

k/ I-2m/n+y
X M----------

2
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and return the values of x and y.

Algorithm V. Given 2F1I[ a, b; c; A and x, y values, then

Step 1. If x 0 then go to step 2

ele go to step 5

Step_2. If x > y then go to step 3

else go to step 4

Step 3. If a-b+x+1/2 > 0 then apply formula (87) and return

else apply formula (88) and return

Step 4. If a-b+x+1/2 > B then apply formula (89) and return

else apply formula (90) and return

Step S. Set w :t -x

Step 6. If a-w-b+1/2 8 then apply formula (91) and return

else apply formula (92) and return.

The

control. We

efficiency of

repeating them

algorithms presented are a demonstration of the main flow of

have tried to minimize the details which contribute to the

an implementation. Some of them are mentioned but we avoid

in other instances since they are obviously implied.

We conclude the "limit-reduction of the hypergeometric functions"

section by illustrating the function of 2F1-RL algorithm in an example.
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Example Given the hypergeometric function

2F1 [ a+5/6, a+7/3; 2a+23/3; 4z(1-z)) (112)

then

Algorithm 9F1-RL: Step 3 is satisfied and at step 7 algorithm IV is

cal led.

Algorithm IV: Given the hypergeometric function

(112), step 2 is satisfied and at step 3 we have

m/n - 5/6 r w -2 k/I - 23/3 (113)

Steps 4 and S are satisfied, hence step 11 provides

x -3 ys 0 (114)

and return to Algorithm 2F1-RL.

At step 8, we set alpha':- a + 23/6. At step 9 we call algorithm I

with input

2FC a+23/6, a+10/3; 2a+23/3; z (115)

Algorithm I

Step I It is true that

1imi t 2F1 E a+23/6-c/2, (c+2a+20/3) /2; 2a+23/3; 4z(1-z)] -
c->8

- 2Fi a+23/6, a+10/3; 2a+23/3; 4z(1-z)J (116)

Step 2 It is also true that

2F1C a+23/6-c/2, (c+2a+28/3)/2; 2a+23/3; 4z(1-z)] - (117)

- (I-Z)-2a-20/3 2F1I c, 1-c; 2a+23/3; zi
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Step 3 Hence, we can get

limit (1-z)-2a-2O/ 3 
2F1 ( c, 1-c; 2a+23/3; zi - (118)

c->@

- (1-Z)-20/3-2a 2F[ 8, 1; 2a+23/3; z]

Step 4 For the right hand side hypergeometric

function of relation (118), the "reduction algorithm" provides 1. Therefore

algorithm I returns back:

(1-z) -20/3-2a (113)

Given the results (114) and (119) algorithm 2F1-RL at step 10 cal.ls

algorithm V.

Algorithm V Steps 1 through 3 of algorithm V are

satisfied, therefore formula (87) ultimately provides the result (128) which is

also the final result of our principal algorithm

-16/27 4-a-17/6 (1-z)-a-14/6 za+7/3 (1-4(1-z)z)9 / 2  (120)

C20736a4 + 442368a3 + 3582656a2+12188288a + 15662080) z4

-(72576a 4 + 1413504a3 + 18227168a2 + 32552448a + 38420488) z3

+(93312a4 + 1640736a 3 + 19726992a2 + 30898800a + 33078528) z2

-(51848a 4 + 810432a3 + 4715064a2 + 12101628a + 11563216) z

+ 18368a4 + 140832a3 + 712584a2 + 1591998a + 13253031
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3.2.3.2. LOGARITHMIC AND OTHER ALGEBRAIC CASES

Our next lemmas and theorems are concerned with logarithmic and

algebraic functions.

Lemma 25. The following relation is true for any complex z

2F11 1, 1; 2; zI a - Cz log(1-z)

Lemma 26. The following relation

2F1 [ n+1, n+m+1; n+m+1+2; zi

(-1)m(n+m+l+1)! dn+m dl
.------------------ ((1-Z)m+l ---2F[ 1, 1; 2; z]

Iln!(n+m)!(m+l)! dzn+m dzi

(121)

(122)

holds for any 1, m, n 5, 1, 2,...

Proof Relation (122) is implied from relations (26) and (32) of

Chapter 2.

Theorem 2. For any integer value of the parameters a, b and

positive Integer values of the parameter c the hypergeometric function 2F1( a,

b; c; zl reduces to Elementary and/or Binomial functions.

Proof This is a consequence of lemma 25 above and lemmas 1 through 5

of our general reduction part.

Lemma 27. The following relation holds

2F [ 1/2, 1; 2; 4z(1-z)] a (1-z) 1

for Izi 5 1/2, Iz(1-z)I 1/4

(123)
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Lemma 28. The following relation holds

2F,1( 1/2+1, 1+m-; 2+n; zi a (124)

(2) m( 2+m) n-M

(-D)n-M U /2) M U/2+m) n-m (1) M (1) nn-M (1 /2+n) 1 -m

dl-n dn-m
z-/2-n-------[zn-1/ 2 (1-Z)1/2-m ----- [(-z)n-1/ 2

dzl-n dzn-m

dm
--- 2FO 1/2, 1; 2; All3

dzm

Proof Relation (124) is Implied from relations (26), (31) and (27) of

Chapter 2.

Our next theorem summar i zes our reduct ions so far accompl i shed for

hypergeometric functions with numeric parameters and leading to Elementary and

algebraic functions.

Theorem 3. The hypergeometric function

2F1( a, b; c; z (125)

is reducible to some Elementary arid/or algebraic functions for any

a, b e (xIx = n or x a n/2, n e ZI

c e (xIx - m or x a n/2 n e Z, m e Z+)

Proof The proof follows from lemma 26 above, theorems 1 and 2 as

wel I as lemmas 1 through S of the general reduction part and the use of Gauss-

Euler transformations (169) and (161).
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3.2.3.3. LEGENDRE FUNCTION REDUCTIONS

We next examine cases where a hypergeometric function is reducible to

Legendre functions.

Lemma 29. A hypergeometric function

2FI[ a, b; c; z] (126)

ie reducible to a Legendre function if two of the numbers 1-c, *(a-b), *(c-a-b)

are equal to each other or one of them equals *1/2.

Proof This is a consequence of lemma 17 and relations (61) and (62)

of Chapter 3.

Our next step again is to generalize Lemma 29 by using contiguity

and/or differentiation.

Lemma 30. Given the hypergeometric function (126) such that

a+b -1+m, m e Z+ (127)

then the following relation holds

2F1 ( a, bi c; z (128)

S(-1)m (1-z)-m

m (c-b)(c-b+)... (c-b+(m-2))(c-b+(m-1))
) ------------------------------------- 2Fi[ a, b-m; c; zi

8 (b-a-(m-1)) (b-a-(m-2))... (b-a-1) (b-a)

m (c-a) (c-b) (c-b+1)... (c-b+(m-3)) (c-b+(m-2))
)----------------------------------------- 2 FIC a-1, b-(m-1); c; zi

1 (b-a-(m-1))(b-a-(m-3))... (b-a)(b-a+1)
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m (c-a) (c-a+1)(c-b) (c-b+1)... (c-b+(m-3))
+ )------------------------------ 2FiI a-2, b-(m-2); c; zi

2 (b-a-(m-2)) (b-a-(m-3))... (b-a+i) (b-a+2)

m (c-a)(c-a+d)... (c-a+(m-2))(c-a+(m-1))
+ ( 1)m _---------------------------------2Fi a-M, b; c; zi I

m (b-a)(b-a+1)...(b-a+(m-2))(b-a+(m-1))

Proof Relation (128) can be proved inductively on m, by using

relation (12) of Chapter 2.

Relation (128) has meaning whenever quantities a and b are not

integer numbers or rationale of the same denominator. Actually, relation (128)

is of benefit whenever quantities a and b are complex numbers (or generally

whenever a and b contain symbolic quantities). Relation (128) obviously

reduces a hypergeometric function to a sum of hypergeometrics such that lemma 28

holds for all of them.

Lemma 31. Given the hypergeometric function (126) such that

a+b a 1+m, m e Z--(-1) (129)

then the following relation holds

2Fi[ a, b; c; zI (130)

n a(a+1)...(a+(n-2))(a+(n-1))
* ( ) (b-a-n)----------------------------- 2Fj[ a+n, b; c; zi

6 (b-a-n) (b-a-(n-1))... (b-a-1) (b-a)

n a(a+1)...(a+(n-2))b
-( )(b-a-n+2)------------------------------2F 1 [a+n-1,b+1; c; z
I (b-a-(n-i))(b-a-(n-2))...(b-a)(b-a+1)
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n a(a+1)... (a+(n-4))b(b+1)
+( )(b-a-n+4)--------------------------------------- 2F1[a+n-2,b+2;c;zl

2 (b-a-(n-2)) (b-a-(n-3))... (b-a+) (b-a+2)

n b(b+1)...(b+(n-1))

+ (-I)n ( ) (b-a+n) ------------------------------- 2F1 [a,b+n; c; z]

n (b-a)(b-a+l) ... (b-a+in-1))(b-a+n)

where n :- -m.

Proof Relation (130) can be proved by induction on n using the

contiguous function relation (7) of Chapter 2.

Relation (138) reduces the hypergeometric function (126) that

satisfies a condition of type (123), into a sum of hypergeometrics that meets the

conditions of lemma 25.

We should notice that in order that a and b satisfy relation

(138), both should be either integers, rational numbers of the same denominator,

coplex, or both contain symbols. If both are integers then at least one must be

negative which implies that lemma 26 applies reducing the hypergeometric

function to a polynomial. It is easy to see that in any of the rest of the cases

relation (130) is applied without any restrictions.

Lemma 32. Given the hypergeometric function (126) such that

a+b * 2c+m-1, m e Z+ (131)

then relation (128) reduces (126) into a sum of hypergeometric functions such

that the conditions of lemma 28 are satisfied.
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Lemma 33. Given the hypergeometric function (126) such that

a+b = 2c+mul, m eZ- (132)

then relation (130) reduces (126) into a sum of hypergeometric functions such

that lemma's 28 conditions are satisfied.

Lemma 34. Given the hypergeometric function (126) such that

a-b - *(1-c)+m, m e Z+ (133)

then the following relation holds

2F1 ( a, b; c; zI (134)

m b(b+1) (b+2)... (b+(m-1))
- ( ) (c-b-a-m)------------------------------(z-1)m 2F1 [ a, b+m; c; z

0 (c-b-a-m)(c-b-a-m+1)...(c-b-a)

in b(b+1)... (b+(m-2)) (c-a)
+ () (c-b-a-(m-2))--------------------------------------(z-1)m-l

1 (c-b-a-(m-1)) (c-b-a-(m-2))...(c-b-a+1)

2 F1 [a-1, b+(m-1); c; zi
000f 000* 000

m (c-a)(c-a+1)... (c-a+(m-1))
+ ( ) (c-b-a+m) ---------------------------- 2F1 [ a-m, b; c; z]

m (c-b-a)(c-b-a+1)... (c-b-a+m)

Proof Relation (134) can be proved by induction on m, given the

relation (11) of Chapter 2.

Relation (134) holds as long as quantities a, b and c are not integer

numbers; clearly it reduces the appropriate hypergeometric function into others

which fall within the capabilities of lemma 29.

Lemma 35. Given the hypergeometric function (126) such that

a-b * t(1-c)+m, m c GZ (135)
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then the formula which is produced from formula (134) by an application of a

pyclic permutation to the quantities a and b, holds.

Lemma 36. Given the hypergeometric function (126) such that

a-b = 1/2+m, m e Z+ (136)

then relation (134) holds and reduces (126) to a sum of hypergeometrics elligible

for lemma 29.

Lemma 37. Given the hypergeometric function (126) such that

a-b - 1/2+m, m e Z- (137)

then relation (134) holds by first applying a cyclic permutation of the

quantities a and b.

Lemma 38. Given the hypergeometric function (126) such that

a+b a 1/2+c+m, m e Z+ (138)

then relation (128) holds and reduces (126) into a sum of elligible for lemma 29

hypergeometr i cs.

Lemma 39. Given the hypergeometric function (126) such that

a+b - 1/2+c+m, m e Z- (139)

then relation (130) applies and reduces (126) to a sum of hypergeometric

functions such that relation a+b - 1/2+c is satisfied.

In generalizing the conditions of lemma 29 to accomplish reduction of

Legendre functions, we have been successful so far, by utilizing as our main tool

"contiguity". However, this is not possible for the rest of the cases we are
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going to deal with. Therefore, we mobilize our last resort: "differentiation".

Unfortunately, despite our many experiments with "differentiation" in these

remaining cases, we have been persuaded that general formulas cannot be provided.

However, computational methods are possible and are described next.

Lemma 40. There is an algorithm such that the hypergeometric function

(126) with
cml 1/2+m, m e Z+ (148)

reduces to a sum of Legendre functions.

Proof This is immediate from relation (26) of Chapter 2. lemma 29 and

the following relation:

dP ,i(z)
------- - vz Pv, 5 (z) - (v+p) P.1,, (z) (141)
dz

Lemma 41. There is an algorithm such that the hypergeometric function

(126) with
c ul1/2+m, m e Z- (142)

reduces to a sum of Legendre functions.

Proof This is a result of lemma 29, relation (30) of Chapter 2 and

relation (141).

Lemma 42. There is an algorithm such that the hypergeometric function

(126) with
2bs= c+m, m e Z (143)

(and symmetrically 2a - c+m)

reduces to a sum of Legendre functions.

Proof Similar remarks to the ones presented in lemmas 43 and 41 apply

here too.
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We conclude our discussion of reduction to Legendre functions with the

following theorem which is a generalization of our lemma 29.

Theorem 4. A hypergeometric function (126) is reducible to:

a) A Legendre function if two of the numbers 1-c, *(a-b) and *(c-a-

h) are equal to each other or one of them equals *1/2,

b) A sum of Legendre functions, if one of the following conditions

ho Id:

1. a+bul+m, meZ+ and a, beC-0

2. a+bsl1+m, meZ--(-1) and a, beC-Z

3. a+bsa 2c+m-1, m e Z+ and a, bEC- Q

4. a+b -2c+m-1, m eZ---1) and a, b e C - Z

S. a-b at*(1-c)+m, m e Z-(0) and a, b, em C - Z

6. a-b - 1/2+m, m e Z-f8) and a, b, c e C - Z

7. a+bu1/2+c+m, meZ+ and a, beC -CQ

8. a+b -1/2+c+m, m eZ%-1-1) and a, b c C-Z

9. c-1/2+m, m e Z and c e C

10. 2b - c+m, symmetrically 2a - c+m, m e Z
and a, b, ceC

Proof This is a consequence of lemmas 29 through 42 of the

present section.
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3.2.3.4. THE ORTHOGONAL POLYNOMIALS OF JACOBI GEGENBAUER LEGENDRE AND

TCHEBICHEF

The Orthogonal Polynomials of Jacobi, Gegenbauer, Legendre and

Tchebichef belong to the set of hypergeometric functions. Every hypergeometric

function

2 F1 (I a, b; c; zi (144)

where a or b is a negative integer reduces to some of the above mentioned

polynomials. Under certain conditions, it is also possible to reduce (144) into

some of the above Orthogonal Polynomials where a or b is some other

arbitrary quantity. To accomplish the latest case, we use linear, cubic as well

as other of higher degree transformations.

Lemma 43. The following relations hold:

Tn(xi " 2F1 [ -n, n; 1/2; 1/2-x/2) (145)

Un(x) - (n+D) 2Fj[ -n, n+1; 3/2; 1/2-x/21 (146)

P,(x) - 2Fi[ -n, n+1; 1; 1/2-x/2) (147)

(2v)n

C,,v(x) - ----- 2F1J -n, n+2v; v+1/2; 1/2-x/21 (148)
n!

n+a
Pn,a,p(X)- * ( ) 2 FI( -n, n+a+f+1; a+1; 1/2-x/21 (149)

n

where n e N, a, 0 e C and where Tn(x) and Un(x) are Tchebichef polynomials.

Pn(x) a Legendre polynomial, Cn,v(x) a Gegenbauer polynomial and Pn,a,n(x) a

Jacobi polynomial.
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Of course, there exist equivalent hypergeometric function relations in

addition to those listed above (145) through (149). However, as lemma 43

implicitly communicatas, we have established that a necessary feature of the

"standard" form of our Orthogonal Polynomials is that they should have a negative

Integer number as a member of their "L1 list". We later on provide rules so that

equivalent hypergeometric functions are reduced to the standard ones: (145)

through (149).

Lemma 44. The following relations hold:

Tn(x) = n/2 Cn,8(x) (150)

n!
Tn(x a"M-------Pn,-1/2,1/2(x) (151)

(1/2)n

Un (x) Ci,n(x) (152)

(n+l)!
Un(x) ----------- Pfl,1/2,1/2(x) (153)

2(1/2)n+1

Pn(x) - Cn,1/2(x) (154)

Pn( Pn,0,e(x) (155)

(2v)n

Cn,v (x)--"-------- Pn,.v-1/2,vv-1/2(x) (156)
(v+1/2)n

Proof Relations (150) through (156) are a consequence of relations

(145) through (149).

Hence, Legendre and Tchebichef polynomials are particular cases of

Gegenbauer polynomials and in their turn Gegenbauer polynomials are particular

cases of the polynomials of Jacobi. Furthermore, Jacobi polynomials cover the

whole spectrum of polynomials that belong to the hypergeometric function set.
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Almost in every case so far the linear transformations - Gauss Euleur

transformations - have been used to "standardize" and transform a hypergeometric

function to a canonical form which is possibly further reducible to some

Elementary or Special Function. Orthogonal Polynomials are not an exception.

Linear transformations are utilized and in addition to them quadratic, cubic as

well as transformations of fourth and sixth degree are a!so put into action.

Hence, we wi I I next concetrate on the utilization of the avai lable

transformations of a hypergeometric function.

The following lemma, similar to the lemma 17 of the Limit-Reduction

subsection, provides the criterion for accepting a hypergeometric function as

elligible for third, fourth or sixth degree transformations.

Lemma 45. A cubic, quadratic or sixth degree transformation of the

hypergeometric function

2F1( a, b; c; z (157)

exists if and only if either

1-c - *(a-b) *(c-a-b) (158)

or If two of the numbers
*(1-c), *(a-b), t(c-a-b) (153)

are equal to 1/3 (cubic), 1/4 (quartic) or 1/6 (sixth degree) correspondingly.

For an extensive list of higher degree transformations look the

Appendix 2 and reference 115).

Lemma 46. The hypergeometric function (144) reduces to an Orthogonal

Polynomial of lemma 44, if a or b or c-a or c-b are negative integers.
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Proof This is a consequence of the following linear transformations,

also calted Gauss-Euleur transformations.

2FC a, b; c; zi - (l-Z)c-a-b 2F1  c-a, c-b; C; zi

z

2F1 [ a, b; c; zi - (1-z)-a 2Fi a, c-b; c; ---i
z-1

(168)

(161)

Lemma 47. For any a a -n/3, n e N, the following hypergeometric

functions reduce to some Orthogonal Polynomials of our lemma 44.

2Fi a, a+1/3; 1/2; zi

2F 1/2-a, 1/6-a; 1/2; zi

2Fi a, a+1/2; 2a+5/6; zi

2Fi[ a-5/6, a+1/3; 2a+5/69, z]

Proof

transformations:

2F1 [ a, 1/6-a; 1/2; z

2F1[ 1/2-a, 1/3+a; 1/2; zi

2F,[ a, a+1/3; 2a+5/6; z

2FI a-5/6, a+1/2; 2a+5/6;

This is a consequence of the following two

(163)2FW 3a, 3a+1/2; 4a+2/3; zi

3z -27z2 (1-z)
- (1 - -- )-3a 2F,[ a, a+1/3; 2a+5/6;---------1

4 (3z-4) 3

2F1 [ 3a, 1/3-a; 1/2; zi (164)

(9-8z)2z
- (1-z)-a 2FC a, 1/6-a; 1/2;-------I

27(1-z)

as well as the Gauss-Euler relations (168) and (161).

Lemma 48. For any a - -n/3, n E N, the following hypergeometric

functions reduce to Orthogonal Polynomials mentioned in Lemma 44.

(162)

z

cubicI
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2FIt a, a+1/2; 2/3; zI 2F11 a, 1/6-a; 2/3; z
(165)

2F1I[ 2/3-a, a+1/2; 2/3; z] 2F1IC 2/3-a, 1/6-a; 2/3; zI

Proof This is a consequence of the following qubic transformation

2FI[ a, 1/6-a; 2/3; xJ (166)

r(1/2-a)r(a+1/3)

---------------- [(1-tl)a 2F1[ 3a, 1/3-a; 1/2; t1l

3,1/21 (1/3)

+ (1-t2 )a 2F[ 3a, 1/3-a; 1/2; t2 ]

+ (1-t3)a 2Ff 1[ 3a, 1/3-a; 1/2; t3J]

where ti, t 2 and t3 are roots of the following cubic equation

(3-4t)3 - 27(1-t)x - 8 (167)

as well as the Gauss Euleur transformations.

Lemma 43. For any a - -n/4, n e N, the following hypergeometric

functions reduce to some Orthogonal Polynomials of our lemma 44.

2F[ a, 1/6-a; 2/3; zJ 2 F1 1 2/3-a, 1/6-a; 2/3; z]

2F1[ a, a+1/2; 2/3; zI 2F1 [ 2/3-a, a+1/2; 2/3; zI
(168)

2Fi a, a+1/4; 2a+3/4; zI 2F1I a+3/4, a+1/4; 2a+3/4; zi

2FI[ a, a+1/2; 2a+3/4; zi 2F1I a+3/4, a+1/2; 2a+3/4; zi

Proof This is a consequence of the following two quartic

transformations:

(169)2Fl[ 4a, 1/2-2a; 2/3; z

(8-9z) 3z
- (1-z)-a 2F1C a, 1/6-a; 2/3; --------I

64(1-z)

2F1C 4a, 2a+1/4; 2a+3/4; z (170)



1le

16z (1-z)2

(1+z)- 4 a 2F( a, a+1/4; 2a+3/4;---------I

(1+z)4

as well as the Gauss-Euler transformations (160) and (161).

Lemma 50. For a a -n/4, n e N, the following hypergeometric

functions reduce to Orthogonal Polynomials of lemma 44.

2Fi a, a+1/4; 1/2; z 2F1 [ a, 1/4-a; 1/2; z

2F1C 1/2-a, 1/4-a; 1/2; z 2F[ 1/2-a, a+1/4; 1/2; zI
(171)

2 F1 [ a, a+1/2; 3/4; zI 2F,1  a, 1/4-a; 3/4; zI

2F, C 3/4-a, 1/4-a; 3/4; z 2F1 [ 3/4-a, a+1/2; 3/4; z]

Proof This is a consequence of the following quartic transformations

2F1 [ a, 1/4-a; 1/2; x (172)

16a(a+1/2)1 (a+3/4)
----------------

2w1/21 (2a+3/4)

[ta(1-t1)2a 2F1 C 4a, 2a+1/4; 2a+3/4; tjl

+ t2a(1-t2)2a 2F1 [ 4a, 2a+1/4; 2a+3/4; t2 JJ

where t1 , t2 designate the two roots of the equation

(t2 -6t+1) 2 + 16t(1-t) 2 x - 0 (173)

which are equal to 3-2sqrt(2) for x - 8.

2F1 [ a, 1/4-a; 3/4; x (174)

16a1 (a+1/4) 1 (a+3/4)

411(1/4)11 (2a+3/4)

[tia(1-t 1 ) a 2F1C 4a, 1/2; 2a+5/4; t1 l

+ t2a(1-t 2)a 2FjC 4a, 1/2; 2a+3/4; t21
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+ t3a (1-t 3)1a 2F,[ 4a, 1/2; 2a+3/4; t3]

+ t4a(1-t4)a 2F1 [ 4a, 1/2; 2a+3/4; t4]

where t1, t2, t3 and t4 are the four roots of the equation

(2t-l4f + 16t(1-t)x u 5 (175)

as welI as the Gauss-Euleur transformations.

Lemma 51. For any a a -n/6, n e N, the following hypergeometric

functions reduce to the Orthogonal Polynomials of lemma 44.

2Fi a, a+1/2; 2a+5/6; zl

2F, [ a, a+1/3; 2a+S/6; zl

2Fi a+S/6, a+1/2; 2a+5/6; z
(176)

2Fi a+S/6, a+1/3; 2a+S/6; zi

Proof This is a consequense of the following transformations of sixth

degree:

(177)
2F, [ Ga, 2/3-2a; 2a+S/6; zi

188z (1-z)
- (1-16z+16z2 P3a2F,1 [ a, a+1/3; 2a+5/6;-------------1

(1-l6z+16z2)3

as welI as the Gauss-Euler transformations.

It is worth mentioning that quadratic transformations, like the

following one:

2Fi[ 2a, 2b; a+b+1/2; zl w 2F1C a, b; a+b+1/2; 4z(1-z)J (178)

can be utilized for similar purposes, and in our case, successfully. However, it

turns out that linear transformations are sufficient to achieve the same goals.
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The next natural step is to generalize the above lemmas. However, we

will not investigate every case as we did in some previous instances before since

such a task is trivial by now. Instead we will gather our accumulated results,

put them in their generalized form in the following lemma and leave the reader to

investigate the details.

Lemma 52. The following hypergeometric functions reduce to some

Polynomials mentioned in Lemma 44

2F, [ a+k, a+1/3+1; 1/2+m; zi

2F1 ( 1/2-a+k, 1/6-a+l; 1/2+m; z

2F, [ a+k, a+1/2+1; 2a+S/6+m; zi

2F, [a-5/6+k, a+1/3+1; 2a+S/6+m; z

2F, [ a+k, a+1/2+l; 2/3+m,; zI

2F, [ 2/3-a+k, a+1/2+1; 2/3+m; zi

2F1[ a+k, 1/6-a+1; 2/3+m; zi

2F1 [ aE+k, a+1/2+l; 2/3+m; z

2F1 C a+k, a+1/4+1; 2a+3/4+m; z3

2F, [ a+k, a+1/2+1; 2a+3/4+m; zi

2F1 [ a+k, a+1/4+1; 1/2+m; z]

2F, C 1/2-a+k, 1/4-a+l; 1/2+m; z

2F1 [ a+k, a+1/2+1; 3/4+m; zi

2F, [ 3/4-a+k, 1/4-a+l; 3/4+m; zi

2F1 [ a+k, a+1/2+1; 2a+5/6+m; z

2F1 [ a+k, a+1/3+1; 2a+5/6+m; z

2FC [

2F1 C

2F1 I

2F1 C

2F1 [E

2F1 [(

2F1 C

2F1 C

2F1 C

2F1 [

2F1 [E

2FI [

2F1 [E

2F1 [

2F[ E

2F1 [t

a+k, 1/6-a+]; 1/2+m; z

1/2-a+k, 1/3+a+l; 1/2+m; zi
(179)

a+k, a+1/3+1; 2a+S/6+m; z

a-S/6+k, a+1/2+1; 2a+5/6+m; zi

a+k, 1/6-a+I; 2/3+m; z

2/3-a+k, 1/6-a+l; 2/3+m; zi

2/3-a+k, 1/6-a+l; 2/3+m; zl

2/3-a+k, a+1/2+1; 2/3+m; zi

a+3/4+k, a+1/4+l; 2a+3/4+m; z

a+3/4+k, a+1/2+1; 2a+3/4+m; zi

a+k, 1/4-a+I; 1/2+m; z

1/2-a+k, a+1/4+l; 1/2+m; zi

a+k, 1/4-a+I; 3/4+m; zi

3/4-a+k, a+1/2+1; 3/4+m; z]

a+S/6+k, a+1/2+1; 2a+5/6+m; zi

a+5/6+k, a+1/3+1; 2a+5/6+m; zi

where k, I and m are appropriate integer numbers.

Orthogonal
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Proof This is a consequence of lemmas (44) through (Si), the

differentiation formulas (26) through (33) of Chapter 2 and the following

differential relations

dm
2M -Pn, (,) (x) (188)

dxm

- (n+a+f+1)mP n-m, (a+m,fi+m) (X)

de

--- Cn,h(x) - 2m(Alm Cn-m,A+m(x) (181)

dxm

3.2.3.5. INCOMPLETE BETA FUNCTION REDUCTIONS

Reductions of a hypergeometric function to an Incomplete Beta

function is the last to be studied in the hypergeometric function reductions.

Lemma 53. For the hypergeometric function

2F1( a, b; c; z] (182)

such that a-c - -1+m, m e Z+, the following relation holds

2F[ a, b; c; zJ (183)

1 m (b-c-(m-1))(b-c-(m-2)) ... (b-c)
-------- )--------------------------------- zm2FIj(a, b; c+m; zi

(1-z)m 8 c(c+1)(c+2) ... (c+(m-1))
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M (b-c-(m-2))(b-c-(m-3)) ... (b-c)
+ ( ------------------------------ nzm-i 2FC a-i, b; c+M-1; zi

1 c (c+i)(c+2) ... (c+(N-2))

... aOUO 0*0@

m b-c
+(z 2FI

M-1 c
a-(m-i), b; c+1; zi

+ ( ) 2F1( a-m, b; c; zi)
m

Lemma 54. For the hypergeometric function (182) such that

a-c - -i+m, m e Z-

the following relation holds

2F1C a, b; c; zi

(c-a-n)(c-a-(n-1)) ... (c-a-i)
n

[ ) (c-n)(c-(n-1)) ...
B

n
- ( ) ac-(n-)) (c-(n-2))

1

(184)

(185)

(c-i) 2F2( a, b; c; z]

. (c-1) 2F,I a+, b; c-(n-i); zi

n
+ ( ) a(a+i)(c-(n-2)) (c-(n-3)) ... (c-1) 2F1C a+2, b; c-(n-2); zi

2

n
+ (- 1 )n+i () a(a+i)(a+2) ... (a+(n-i)) 2FjC( a+n, b; c; z]J

n

The following theorem summarizes the Incomplete Beta case reduction.



185

Theorem S. The

Beta functions if either of

hypergeometric function (182) reduces to Incomplete

the following conditions holds

a -c - 1 + m, m E Z (186)

b - c - 1 + m, m e Z (187)

3.2.4. OTHER REDUCTIONS

SFor higher values of p and q of the Generalized Hypergeometr ic

Function pFq(z), besides the general reduction methods that apply to them we also

utilize the relations that appear in table 5 of Chapter 3.1. It turns out that

these formulas are often utilized to solvs problems appearing in entries of the

tables of the Bateman Manuscript.
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Chapter 4

CONCLUSIONS AND FURTHER RESEARCH

Our thesis constitutes the first systematic effort towards the

automation of the definite integrals for Special Functions, particularly the

automation of the Bateman's Manuscript Project. Research and implementation are

st i I I under way and we f eel that a lot more can be accompli shed.

Let us first present some statistics of our "early" implementation of

the Laplace transforms and see what this package can accomplish in comparison

with the Bateman's Manuscript. Notice, that this package incorporates a proper

subset of the methods presented here. The total number of formulas in Bateman is

approximately 5,588. The total number of formulas that involve Special Functions

in their entries in the "Laplace section" of the Bateman Manuscript is

approximately 450. The total numbs., of formulas that involve Special Functions

in their entries throughout the two volumes of the Bateman Manuscript is

approximately 680. Currently, we incorporate eight formulas in the table look-

up. We estimate that in order to exhaust the Laplace and K transforms we need

thirty to thirty five formulas. However, few are required to cover the largest

parts of these sections. With eight formulas in the table we can exhaust and

solve all entries in the Bateman Manuscript for Special Functions of linear or

square roots of linear argument. We estimate to cover at least 75% of the
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Special Functions of other arguments in the Bateman Manuscript Project (i.e.

t-1 , t2, e-t, (t 2 +a2)1/2, sinh(t) etc.) as soon as a Hankel implementation has

been made. The rest of them will require implementations of other integral

transforms. The Special Functions of other arguments occupy approximately 35%

of the total number of Laplace transforms entries.

More, specifically, our current Laplace transforms implementation is

generally capable of integrating expressions described in the two categories

belows

1. Special Functions of linear or quadratic argument multiplied with:

a. Arbitrary powers of the argument

b. Trigonometric and exponential functions of linear
argument.

2. Products of two Special Functions of linear or quadratic argument,

multiplied with the same kind of functions we mentioned in the first category.

The Special Functions of this latter category can be functions of only one of the

following groups:

a. Any kind of Bessel, Modified Bessel, or Hankel
funct ions.

b. Orthogonal Polynomials.

c. Confluent Hypergeometric Functions.

The package is relatively fast, as the actual examples in the appendix

1 show. The only main external package it utilizes is the pattern matching

routines of Schatchen C231.
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Let us next present points of research that might be followed to

Increase the current capabilities of our design.

1. Computational methods to facilitate the expression of products of

Generalized Hypergeometric Functions in terms of one Generalized Hypergeometric

Function and vice versa. These computational methods can help both stages one

and three.

2. Computational methods for the reduction of Gauss hypergeometric

functions to inverse ,!itomorphic functions[31.

3. Generalizations of the pFq(z) to incorporate the G-function and

the MacRobert's E-function. It will basically require an additional

computation in the existing reduction procedure: The reduction of the G and E

functions to pFq(z) wherever possible.

4. Computational methods for INding definite integrals of functions

other than Special Functions (eg. algebraic etc.) resulting in expressions

involving Special Functions.

5. Computational methods for the summation of the Generalized

Hypergeometric Functions. This is sometimes a necessary step for those cases in

which the "transform parameter" has a particular numerical value. Sometimes the

existing reduction methods are sufficient particularly the general reduction

methods. (see also the Introduction of Chapter 3 for more comments).

We next give some ideas where our scheme - particularly stage 3 -

can be utilized for other than definite integration purposes.
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1. Differentiation of Special Functions. Here, we should incorporate

stage 1, a couple of differentiation formulas at the Generalized Hypergeometric

level for stage 2, stage 3 and the well known differentiation algorithm from

Calculus. It should be noticed that differentiation does not increase the values

of p and q of the pFq(z), unlike the case of integration, and as a consequence

stage 3 is greatly simplified. Likewise, stage 1 will be a proper subset of our

stage 1 of our definite integration scheme since transform properties etc. should

be Ignored here.

2. Simplification of Special Functions. The deletion of stage 2 from

our scheme results in a package for reducing an expression involving Special

Functions to other Special Functions and/or elementary functions.

3. Differential equations. Stage 3 can be helpful to Generalized

Hypergeometric series solutions of differential equations [241. Actually, we

feel that a similar strategy to that adopted for the definite integration problem

can possibly be applied to the problem of solving Bessel, Legendre, Confluent

etc, differential equations. All these differential equations can be viewed as

particular cases of the differential equation (1) Chapter 2. The solution of

this last equation which involves Generalized Hypergeometric Series then can be

processed by the reduction methods of our stage 3.
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APPENDIX I.

This is a sample of some actual examples of the Laplace Transform
system in MACSYMA. "Definte" is the top function that calls the integral
transforms, it takes two arguments: the expression to be integrated
and the variable, and assumes limits of integration from zero to infinity.

(CIO) ASSUME(P > 0);
(010) [P > 0]

(CI) SHOWTIME:TRUES
time- 1 msec.

(C12) /* LAPLACE TRANSFORMS */

/* SOME ELEMENTARY FUNCTIONS. */

T^"'(1 /2) *%E^"'(-A*T/4) *%E^"'(-P*T);

time- 26 msec.
A T

-P T----
4

(012) SQRT(T) %E

(C13) OEFINTE(%,T);

RPART FASL 0SK MACSYM being loaded
loading done

A
Is - P - - positive, negative, or zero?

4

NEGATIVE;

GAMMA FASL 0SK MAXOUT being loaded
loading done
time- 882 msec.

SQRT (%PJ)
(013) ------------

A 3/2
2 (P + -)

4

(C14) T^(3/4)*%E^(-TA2/2/B)*%E^(-P*T);
time- 25 msec.

2
T

P T
3/4 2 B

(014) T %E

(CIS) DEFINTE(%,T);
time- 1208 msec.

3 7/8
(D15) 3 GAMMA(-) B

4
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2
B P

8 SQRT(%PI) M (-
5/8,- 1/4 2

5/8 %I SQRT(2) SORT(2) 3 1/4
3 2 C--------- +----------) GAMMA(-) B SQRT(P)

2 2 8

2 2
3/8 B P B P

2 SQRT(%Pl) M -
5/8, 1/4 2 4

- --------------------------------------------- ) %E /4
%I SORT(2) SQRT(2) 3 7 1/4
C---------- +--------- GAMMAC-) B SORT(P)

2 2 8

(CiG) T^(-1/2)*%E^(-2*A^(1/2)*T^(1/2))*%E^(-P*T);
time- 2S msec.

- P T - 2 SQRT(A) SQRT(T)
%E

(016)- ----------------------
SORT (T)

(C17) DEFINTEC%,T);
time- 1018 msec.

A
A ---

2 P
2 P SQRT(%PI) %E

(017) SQRT(2) %E ---------------
SQRT (2)

A

SQRT(P) 2 P
SQRT(2) SQRT(%PI) ERF(-----) %E

SQRT (A)
------------------------------------- )/SQRT(P)

2

(C18) T^(1/2)*%EA(-P*T-A/T):
time= 17 msec.

- P T - A/T
(018) SQRT(T) %E

(C19) OEFINTE(%,T);
Is A positive, negative, or zero?

POSI TIVE;
time- 201 msec.

3/4
%PI CI (2 SQRT(A) SORT(P)) - I (2 SQRT(A) SQRT(P))) A

- 3/2 3/2
(019) --------------------------------------------------------------

3 %PI .3/4
SIN(-----) P

2
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(C20) SIN (A*T)*COSH (B*T^2)*%E^(-P*T);

HYPER FASL DSK MAXOUT being loaded
loading done
time= 21 msec.

(020)

(C21) DEFINTE(%,T);
time- 2984 msec.

2
(P + %I A)

8 B
(021) - %E

2
(P + %I A)

8 B
SQRT(%PI) %E

- P T 2
%E SIN(A T) COSH(B T

2
(P + %I A)

- -----------
8 B

SORT(%PI) %E
(-------------------------

SORT (2)

2 %I SORT(B)
ERF(- ------------

P + %I A
---------------------------------------- )1(4 SQRT(2) SQRT(B))

SQRT (2)

+ 1 %E

2

2
(P + ZI A)

(P + % I A)
---------- SORT(%PJ) %E

8 B

8 B 2 SQRT (B)
ERF(----------

P + %I A
(----------------------------------------

SQRT (2)

2
(P + % I A)

8 B
SQRT(%PI) %E

+- ----------------------- )f(4 SQRT(2) SQRT(B))
SQRT (2)

2
(P - %I A)

S B

2
(P - % I A)

8 B
SQRT(%PI) %E

SQRT (2)

2
(P - %I A)

8 B 2 %1 SQRT(B)
SQRT(%PI) %E ERF (- ------------

P - %I A
----------- ---- -------------------- )/(4 SQRT(2) SORT(B))

SQRT (2)
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2
(P - %I A)

2 -----------
(P - %I A) 8 B 2 SQRT(B)
----------- SQRT(%PI) %E ERF(- ---------

8 B P -XI A
- %I %E (----------------------------------------

SORT (2)

2
(P - %I A)

8 B
SQRT(%PI) %E

+- ----------------------- )/(4 SQRT(2) SQRT(B))
SORT (2)

(C22) /* SOME "CONFLUENTS". NOTICE THAT "M(K,M] (Z)" IS A IHITTAKER FU
NCTION. */

%E^ (A*T) *T^2*ERF (TA(1/2)) *%E^(-P*T);
time- 18 msec.

2 A T -P T
(022) ERF (SQRT (T) ) T %E

(C23) DEFINTE(%,T);
Is A - P positive, negative, or zero?
NEGATIVE;
time- 417 msec.

1 2
(023) 15 (----------------------------------------

1 1 3/2
SQRT(-----+ 1) 3 (P - A) (-----+ 1)

P - A P-A

1 7/2
+--------------------------)/(4 (P - A) )

2 1 S/2
5 (P - A) (-----+1)

P - A

(C24) TA(1/2) *GAMMA INCOMPLETE(1/2, A*T) *%EA(-P*T);
time- 12 msec.

1 -P T
(D24) GAMMAINCOMPLETE(-, A T) SQRT(T) %E

2

(C25) DEFINTE(%,T);
time- 1702 msec.

%PI 2
(025) --------------------------- - -------------------------

3/2 A 3/2 3/2 A 3/2
2 (P-+A) (1------) (P + A) (1-------

P + A P + A

(C26) TA(3/2)*GAMMAGREEK (3/4,A*T)*%E^(-P*T);
time- 12 msec.

3 3/2 - P T
(026) GAMMAGREEK(-, A T) T %E

4
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(C27) DEFINTE(%,T);
time- 276 msec.

1
15 GAMMA(-)

4
(027) -------------------------------

%I SQRT(2) SORT(2) 3 5/2
16 (---------- +--------) P

2 2

(C28) T*M1/2,3/4J (A*T)*%EA(-P*T);
time- 12 msec.

-P T
(028) M (A T) T %E

1/2, 3/4

(C29) DEFINTE(%,T);
time- 418 msec.

1 2 A 5/4 A 3/4
15 GAMMA(-) P (1 - ----- ) A (----- - 1)

4 -7/4, -3/2 A A
p + - p + -

2 2
(029) --------------------------------------------------------

A 13/4 A 3/2 A 3/4
16 SOR T (%PI) (P + -) (1------) (-----+ 1)

2 A A
P+-- p+ -

2 2

(C30) T^(3/2)*M[1/2,1](T)*%E^(-P*T);
time- 12 msec.

3/2 - P T
(D30) M (T) T %E

1/2, 1

(C31) DEFINTE(%,T);
time- 1025 msec.

1 1
6 (--------- -----------------------

1 1 12
--------- 3(P +-) (1------

1 2 - 1
P + - P + -

2 2
(031) --------------------------------------

1 4
(P + -)

2

(C32) /* SOME BESSEL FUNCTS (BF'S).

/* J[V] (Z), 1ST KIND OF BF'S. */

/* Y[IV] (Z), 2ND KIND OF BF'S.*/

/* H[V,1] (Z), 1ST KIND OF THE 3RD KIND OF BF'S (1ST HANKEL). */

/* H[V,2] (Z), 2ND KIND OF THE 3RD KIND OF BF'S (2ND HANKEL).*/
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T^(-1/2)*J[0] (2*A^(1/2)*TA(1/2) )*%EA((-P*T);
time- 17 msec.

-P T
J (2 SORT(A) SQRT(T)) %E
0

(D32) -----------------------------

SORT (T)

(C33) DEFINTE(%,T);
Is A zero or nonzero?

NONZERO;
time- 277 msec.

A

A 2 P
SQRT(%PI) 1 I---) %E

0 2 P

(033) -------------------------
SQRT (P)

(C34) T^(1/2)*J(1J(2*A^(1/2)*TA(1/2))*%EA(-P*T);
time- 1S msec.

-P T
(D34) J (2 SQRT(A) SQRT(T)) SQRT(T) %E

1

(C35) DEFINTE(%,T);
time- 221 meec.

- A/P

SQRT (A) %E
(035) ---------------

2
P

(C36) T^2*J[1J (A*T)*%EA(-P*T);
time= 11 msec.

2 - P T
(036) J (A T) T %E

1

(C37) OEFINTE(%,T);
time- 941 msec.

3 A
(D37) --------------

2
A 5/2 4
(-- + 1) P
2
P

(C38) T^(3/2)*Y[1](A*T)*%EA(-T);
time- 9 msec.

3/2 -T
(D38) Y (A T) T %E

1
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(C39) DEFINTE(%,T);
time- 325 msec.

(039)

(C40)
time-

(D40)

%1 1 3/4
15 %I SQRT(2) P - -- ) (------- 1)

- 2,1/2 A 2
A + 1

---------------------------------------------
2 2 2 2 1/4

8 SQRT(%PI) (A + 1) ((A + 1) - 1)

T^3*Y [3/4](^(1/2) )*%E^(-P*T);
13 msec.

3 - P T
Y (SQRT(T)) T %E
3/4

(C41) DEFINTE(%,T);
times 1785 msec.

1

3 1 8P
5643 GAMMA(-) M (---) %E

8 7/2, 3/8 4 P
(041) - ----------------------------------

3 7/2
512 GAMMA(-) P

4

5 1 8 P
1365 SQRT(2) GAMMA(-) M --- E

8 7/2, - 3/8 4 P
------ - ------------- --------------------------------

1 7/2
256 GAMMA(-) P

4

(042) T^'(4/3)*Y[3/4] (T^(1/2))*%E(-P*T);
time- 13 msec.

4/3 - P T
(042) Y (SQR T (T)) T %E

3/4

(C43) OEFINTE(%,T);
time= 1735 msec.

1

17 1 8 P
697 GAMMA(--) M (---) %E

24 11/6, 3/8 4 P
(043) - -------------------------------------

3 11/6
216 GAMMA(-) P

4
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1

23 1 8 P
23 SQRT(2) GAMMA(--) M (---) %E

24 11/6, - 3/8 4 P

1 11/6
12 GAMMA(-) P

4

(C44) T"(3/2)*Y(1/21 (A*T)*%E^(-P*T);
time= 13 msec.

3/2 -P T
(044) Y (A T) T %E

1/2

(C45) DEFINTE(%,T);
time- 1274 msec.

2
1 2 A

SQRT(2) (-------------------

2 2
A A 2 2
-- +1 (-- + 1) P

2 2
P P

(045) - -------------------------------
2

SORT(%PI) SQRT(A) P

(C46) T^(3/2)*H[1/2,1J (T)*%E^((-P*T);
time- 12 msec.

3/2 - P T
(046) H (T) T %E

1/2, 1

(C47) DEFINTE(%,T);
time- 731 msec.

4
(047) ------------------------------

1 2 3
SQRT(2) SQRT(%PI) (-- + 1) P

2
P

1 2
%I SQRT(2) (------ ------------- )

1 1 2 2
-- +1 (-- + 1) P

2 2
P P

2
SQRT(%PI) P
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(C48) T^(1/2)*H[3/4,2] (T)*%E^(-P*T);
time- 12 msec.

-P T
(048) H (T) SQRT (T) %E

3/4, 2

(C49) DEFINTE(%,T);
time- 2997 msec.

1 1 1 3/8 3/4
5 %I GAMMA(-) P (----------) (-- - 1) P

4 -3/2, -3/4 1 4
SQRT (-- + 1) P

2
P

(D49) ----------------------------------------------------------
%I SQRT(2) SORT(2) 2 3

18 SQRT(2) (-------------------) GAMMA (-)
2 2 4

1 1 1 3/8 3/4
5 GAMMA (-) P (------------) (-- - 1) P

4 - 3/2, - 3/4 1 4
SQRT (-- + 1) P

2
P

---------------------------------------------------------------

%I SQRT(2) SQRT(2) 2 3
18 SQRT(2) (-------------------) GAMMA (-)

2 2 4

3 1 3/4
4 %I GAMMA(-) P (------------) P

4 - 3/2, 3/4 1
SQRT(-- + 1)

2
P

----------------------------------------------------

%I SQRT(2) SQRT(2) 3 2 1 1 3/8
(----------+---------) GAMMA (-) (-- - 1)

2 2 4 4
P

(C5) T*H(2/3,1](T^(1/2))*%E^(-P*T);
time= 12 msec.

-P T
(050) H (SQRT(T)) T %E

2/3, 1

(C51) DEFINTE(%,T);
time- 2308 msec.

I

1 1 8 P
4 %IGAMMA(-) M --- ) %E

3 3/2, 1/3 4 P
(051) - ------------------------------------

2 3/2
3 SORT(3) GAMMA(-) P

3
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1.

1 1 8 P
4 GAMMA(-) M (---) %E

3 3/2, 1/3 4 P
--------------------------------------

2 3/2
3 GAMMA(-) P

3

1

2 1 8 P
8 %IGAMMA(-) M (---) %E

3 3/2, - 1/3 4 P

1 3/2
3 SQRT(3) GAMMA(-) P

3

(C52) /* I [V] (Z), KIV](Z), MODIFIED BF'S. *

T^(-1/2)*I [ll (2*A^(1/2)*T^(1/2))*%E^(-P*T );
time- 17 msec.

-P T
1 (2 SQRT(A) SQRT(T)) %E
1

(052) -----------------------------
SORT (T)

(C53) DEFINTE(%,T):
Is A zero or nonzero?

NONZERO;
time- 384 msec.

A

A 2 P
SQRT(%PI) I (---) %E

1/2 2 P
(053) -------------------------

SQRT (P)

(C54) TA(1/2)*l[1](T)*%E^(-P*T);
time= 11 msec.

-P T
(054) I (T) SQRT(T) %E

1

(C55) OEFINTE(%,T);
time- 297 msec.

1 1 5/2
3 SQRT(%PI) P (------------) SQRT(-- - 1) P

-3/2, - 1 1 4
SQRT(1 - --) P

2
P

(055) -------------------------------------------------------
16
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(C56) TA2*K[(3/4) (T^(1/2))*%E^(-P*T);
time= 13 msec.

2 - P T
(056) K (SQRT(T)) T %E

3/4

(057) OEFINTE(%,T);
time- 2840 msec.

1 %I%PI

5 1 8 P 8
65 %PI SQRT(2) GAMMA(-) M (- ---) %E

8 5/2, - 3/8 4 P
(057) ---------------------------------------------------------

1 5/2
64 GAMMA(-) P

4

1 7 %I %PI

3 1 8 P 8
209 %PI SORT(2) GAMMA(-) M (- ---) %E

8 5/2, 3/8 4 P

3 5/2
128 GAMMA(-) P

4

(C58) T^(5/2)*K1/21(T)*%E^(-P*T);
time- 12 msec.

5/2 - P T
(058) K (T) T %E

1/2

(059) DEFINTE(%,T);
time- 1889 msec.
(059)

4 1
3 (%I - 1) (%I + 1) SQRT(2) SQRT(%PI) (------------+-----------

1 3 2 1 2
3 (1---) P (1---)

2 2
P P

4
2 P

4 1
(%I - 1) (%I + 1) SQRT(2) SQRT(%PI) (----------+-----------

1 3 2 1 2
(1---) P (1 - --)

2 2
P P

3
2 P
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(C68) T^3*J[01](T^(1/2))^2*%E(-P*T);
time= 13 msec.

(060)

(C61) DEFINTE(%,T);
time- 906 msec.

1

1 2 P
911 (-)%E

1, 1 P
(061) 6 (------------------

16 SQRT(P)

2 3 -P T
J (SQRT(T)) T %E

0

1

1 2 P
5 m -)%E

3/2, 3/2 P
- -------------

96 p

1

1 2 P
3 ME

1/2, 1/2 P
-----------

2

1

1 2 P 4
+ I (---) %E

0 2 P

(C62) J[1] (T)^2*%E^(-P*T+R);
t ime= 12 msec.

2
(062) J

I

(C63) DEFINTE(%,T);
time- 269 msec.

%PI SQRT(2) 0

(063)

R -P T
(T) %E

4 2
(--+2) P

2
P

(- -----------
1/2,0 4

--------------------------------------
4 3/2 .3

16(1---) P
2

P

(C64) TA(1/2)*J(1/2] (T^(1/2))A2*%EA(-P*T);
t i me= 15 msec.

2
(D64)

(CGS) DEFINTE(X,T);
time- 299 msec.

(065)

- P T
J (SORT(T)) SQRT(T) %E
1/2

- 1/P
%I ER? (% SQRT(P)) %E

------------------------
3/2

SQRT(XPI) P

(C66) TA(5/2)*Y[1/21 (T^(1/2))^2*%E^(-P*T);

R
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t ime- 15 msec.

(066)
2 5/2 - P T

Y (SQRT(T)) T %E
1/2

(C67) OEFINTE(%,T);
time= 1599 msec.

1

1 1/4 2 P
2 M (-) P %E

3/4, 3/4 P
(067) - 12 (- ---------------------------

3

1%

S/4, 5/4 P

1

2 P

+- ----------------------
1/4

45 P

- 1/P
%I SQRT(%PI) ERF(%I SQRT(P)) SQRT(P) %E 4

+- -------------------------------------------- )/(%PIP)
2

(C68) 1(8]0(2*A^(1/2)*T^(1/2))A2*%EA(-P*T);
t i me- 15 msec.

(068)

NONZERO:
time- 300 msec.

(069)

2 - P T
1 (2 SQRT(A) SORT(T)) %E

0

(C69) DEFINTE(%,T);
Is A zero or nonzero?

2A

2 A P
I (---) %E
0 P

P

(C70) T'(3/4)*JC[1/2] (T)*J [1/4] (T)*%E^(-P*T);
t ime- 15 msec.

3/4 - P T
J (T) J (T) T %E
1/4 1/2

(C71) DEFINTE(%,T);
time= 1266 msec.

5/4, - 1/2

(071)

1 16 1/4
(-----------) (-- - 1)

4 4
SQRT (-- + 1) P

2

P

P
- ---------------------------------------

3/4 %I SQRT(2) SQRT(2) 3 1
4 2 (---------- -------- ) SQRT(%PI) GAMMA(-)

2 2 4

(C72) J[1/2] (T^(1/2) ) *Y(1/21 (T^(1/2) )*%EA(-P*T) ;

(D70)

4 N
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times 15 msec.

(072)

(C73) DEFINTE(%,T);
time- 365 msec.

(D73)

- P T
J (SQR T (T)) V (SORT(T)) %E
1/2 1/2

1

1 2 P
%I I (---)%E

1/2 2 P

P

(C74) T* 1[0](A*T/2)*I
t ime- 17 msec.

(074)

(C75) DEFINTE(%,T);
time= 1203 msec.

P

[1] (A*T/2)*%E^(-P*T);

A T AT -Pt
I (---) I (---) T %E
0 2 1 2

- 1/2, - 1

(075)

2 2
2 A A

(1 - --- ) A SQRT(-- - 1)
2 2
P P

2 2
A A 3

2 (1 - -- ) SQRT(-- + 1) P
2 2

P P

(C76) 1 [1/2](T^(1/2))*K[1/21(T^(1/2))*%E^(-P*T);
t ime- 15 msec.

-P T
(076) I (SQR T (T)) K (SQR T (T)) %E

1/2 1/2

(C77) DEFINTE(%,T);
time- 2389 msec.

1

1 2 P
%I%PI (%I+1) I (---) %E

1/2 2 P
(077) -------------------------------

4 P

1

1 2 P
%I %PI (%I-1)I (---) %E

1/2 2 P

%PI (I + 1) 1

00

(---) %E
1/2 2 P

4 P

%PI (%I - 1) 1
1

(---) %E
1/2 2 P

---------------------------------- +----------------------------------
4 P 4 P

(078) /* RELATED TO BF'S FUNCTIONS. */

1

1

2 P
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/* STRUVE FUNCTIONS. */

T^(-1/2)*LSTRUVE[-1/2] (T^(1/2))*%E^(-P*T);
time- 16 msec.

LSTRUVE

(078)

- P T
(SQR T (T)) %E

- 1/2
---------- -----------

SOR T(T)

(C79) OEFINTE(%,T);
time= 1333 msec.

I

1 3
(%I - 1) (%I + 1) SQRT (2) GAMMA (-) GAMMA (-) I

4 4

1 8 P
(---) %E

1/4 8 P
(079) - ----------------------------------------------------------

4 SORT(%PI) SQRT(P)

(C80) T^(3/2)*HSTRUVE(1] (T^(1/2))*%E^(-P*T);
time- 13 msec.

(080)
3/2 - P T

HSTRUVE (SQRT (T)) T %E
1

(C81) DEFINTE(%,T);
time- 743 msec.

1

1 3/4 8 P
16 SQRT(2) M (---) P %E

1/4, 5/4 4 P
(081) 5 (--------------------------------------

15

1

32 SQRT(2) M
1 1/4 8P

(---)P %E
3/4, 7/4 4 P

-----------------------------------------
525

1

3 1 3/2
+ 12 %I GAMMAGREEK(-, - --- ) P

2 4 P

4 P 7/2
%E )/(3 %PI P

(C82) T^(-1/2)*LSTRUVE[-1/21 (A*T)*%E^(-P*T);
time- 16 msec.

-P T

(082)

LSTRUVE (A T) %E
- 1/2

SQRT (T)

(C83) DEFINTE(%,T);
time- 1279 msec.
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%I P
%I (ZI - 1) (%I + 1) SQRT(2) ERF(----)

A
(083) - --------------------------------------

4 SQRT (A)

(C84) T*HSTRUVE(1] (T) *%E^(-P*T);
time- 10 nsec.

-P T
(084) HSTRUVE (T) T %E

1

(C85) 0EFINTE(%,T);
time= 232 msec.

(D85)
16 %I

- -----------------------
3/2 1 3/2 3

3 %PI (-- + 1) P
2
P

(C86) /* LOMMEL FUNCTIONS. */

T-(/8)*S[1/2,1/4(T^(1/2))*%E^(-P*T);
t ime= 14 msec.

S
1/2, 1/4

(SORT (T)) 1I

(C87) DEFINTE(%,T);
time- 1326 msec.

7

5 1
5 GAMMAGREEK(-, -

8 4 F

9/8 - P T
r %E

1 5%I%PI

5/8 4 P 8
-)P %E

(087) 3 GAMMA(-) (----------------------------------------------
8 3/4

2 2

I

5/8
64 2

1 5/16
(---) P

8aP

11/16, 13/16 4 P 23/8
-- - ------------------------- ------------- )/(4 P

195

(C88) T^ (1/4) *S[1/2,-1/2(T^(1/2))*%E^(-P*T);
t ime= 16 msec.

S
1/2, - 1/2

1/4 - P T
(SQR T (T)) T %E

(086)

(088)

M

)
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(C89) DEFINTE(%,T);
time- 229 msec.

(D89)

4 P
%I SQRT(%PJ) ERF(- 2 %I SQRT(P)) %E

- ------------------------ ----------------
3/2

2 P

(C90) TA(1/8) *SLOMEL(1/2,1/41 (TA(1/2) )*%EA(-P*T);
time- 14 msec.

(D90) SLOMMEL
1/2, 1/4

1/8 - P T
(SQR T (T)) T tE

(C91) DEFINTE(%,T);
time- 5376 msec.

1 %I%PI

5 7 4 P 8
GAMMA(-) GAMMA(-) %E

8 8
(091) - --------------------------------

3/4 5/4
2 2 P

1 %1 %PI

5 7 4 P 8
GAMMA(-) GAMMA(-) %E

8 8

3/4 5/4
2 2 P

%I %PI 1

5 7 8 4 P
%I GAMMA(-) GAMMA(-) %E

8 8

3/4 5/4
2 2 P

1 %ItPI

5 7 4 P 8
%I GAMMA(-) GAMMA(-) %E

8 8

3/4 5/4
2;2 P

1
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1 5 %I%Pl

1/4 5 1 7 4 P 8
2 GAMMAGREEK(-, - --- ) GAMMA(-) %E

8 4 P 8

5/4
2 P

(C92) T^16./4)*SLMMEL[1/2,-1/2(T^(1/2))*%E^(-P*T);
t ime= 16 msec.

SLOMMEL
1/2, - 1/2

1/4 - P T
(SQRT(T)) T %E

(C93) DEFINTE(%,T);
time- 633 msec.

1

4 P
%I SQRT(%PI) ERF(- 2 %I SQRT(P)) %E

(093) - ----------------------------------------
3/2

2 P

1

XI GAMMAGREEK(-
1

2

1
- --- ) %E

4 P

4 P

3/2
4 P

time- 66809 msec.
(094) BATCH DONE

(C95) CLOSEFILE(MUC,OEMO);

(092)
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APPENDIX 2.

The quadratic transformations (see also [3] and (15)):

(i) F, 1; a--b+1; )

:(1- zY)~' [!4e, -b b+Gz+1)/2; 1+P a- b;-4d1V zY~'1

(2) F(2a, 29-b;+ - b+3; z)= F[a, b;a+b-+Y/; 4z(1--z)]

(3) F(2a, 2b;a++;+ F=(a + b Y?)I , E ; 1; z2)
z ) ,(a+ Y,) r(b+%!1) /2

'a)+ b +%) (-2))
F-()zIM F (a + Y,, b +%Y;; 3/2; z2.

(4) F (c,b; 2b; z) = 1I- %z)c F412c,Y%2+ Y!a;b6+;[/(2- z)?I

(5) F[4a, b;2b; 4z(1+z)>=-(1+z)ya)F (a, a +42--b;b ÷ -4;Z 2 )

. (6)F (a aY+; b; 2 Z - Z2) 1%Z)~2" A[2 q, 2 a - b + 1; b; z/(2 - z)]

Coursats table of quaCra$c transfonncrlons. Ib square roots are

defined in such a way that their value becomes real and positive if z is

real mnd 0.< z < 1. All formulas are valid in a neigruorhood of z=0.

217Q/1) '(a + b + )
(7) a , F(a, b; 34; z)

F (a +Y2) (b + !1) - -

- F[2., 2 ; a + b + ;2 (I+ z%)

+ F[2a, 25; aY4- b +3; (1- zX)]

217( ) 1(a+1 -b).
(8) (1+ z) F (ca, b;-M; -z)

P.(a + )P(1--b)

= F[2a, I- 2;ca.+1-tb;+/2--2 (z + z)~t

+ F[ 2 ,1.-- 2 ; a +1- ;%M2 z 1z)~E

2 V(--) P(a + b -- F ;
(9).z F(a, b; 3/2; z)

P(t - 3 ) 17(6 - 34)

=F(2,rz -YL2b - 1; a + b-M%- Vz

- F(2a -1, 2b - 1; a + b -y; %%Z").

(10) F(q, b; a+ b +; z)= F[2a, 26; a+2b a +3 ; 3+-Y:(1- z) 1

(11) F(q, b;acc + b + Z;z)

( 1 2 )' -1
-a + 4(1 - z)"l~2 e F12a,a -b+%; a +b +3 ;L -b+(1V- z) +1

(12) F(a, b; a + b + -z) .

-[(1+ Z)+ z tVCF[2a, a-It; 2a+ 2b; 2(z+ z27)- 2z

(13) F(a, b; a+b ---:; Z)

(1- )~ F[2a- ), 2b---1;a+ b- ;3 -4(i-z)"1

(next page cont'd)
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(the quadratic transformations cont'd)

(14) F(, b; a+b-M; z)=(I- z)-"[.+Y( )

XF[2r-,1 -b (+!"; a1+ b-Y;-

(1--z) + xI
(15) F (C, b; CL + b - % z 1 ( + Z)) +ME:2

x F[2a - 1, a + b -1; 2a + 2b - 2; 2(z+2)t-2z]

(16) F(q, a +MY; c; z)

. ( -z)~" F[26, 2c - 2a- 1; c; z - (I -- z)~

(17) F(a, a+ ; ; Z)

d(I+ z )2[2a, c -'A; 2c-1; 22y(1+ z'' -

(18) F[,b;(a + b + 1)/2;z)=F[a,Mb; (a + b + 1)/2;4z (1 - z)1

(19) F[ a, b; (a + b + 1)/2; z].

(1 - 2 z) F[ +2 a, V2 + Yb; (a+ b + 1)/2; 4z(1 -Z)1

- (20) F[c, b; (a + b + 1)/2; z] (I- 2)~

FP , V2 +aa; (a + b+1)/2; 4 z(z - 1)(2z-1 2

(21) F[cz, b; (a + b + 1)/2; -z4= [(1+ 4Z) + zIV 2

FIc, Mcz0+/; -+ b; 4z7(z +1)V 4 [(1+ Z) + z -2

(22) F(c, 1 -a; c; z)

- (1- ~' F [V2 C -V2G, (C + a - ])/2; c; 4 z(I - z)]

(23)c (1-- zW 2 (- 2 z) F [ -c+2, (c+ 1 c- )/2; a; 42(1 -1z)

(2)F (a, I - a; C; Z) ) -~1 - 2z) "~"

x [ c - z , (c + o ) /2; C; 4 z (z 27-) ( - 2J2

(25) F(a, 1-a; c; -z) +(1+ z)c1 [(i Z) +z2--2a-2c

x F I C + C Y2,c ; 2C.2 : (+Z) (+ Z) +Z}-

(26) F(ci, b; 2b; 4
(l-z)~MF[ a, / Ia; 6 + %; (z2/4) (z -- 1f)

(27) ( z) )2/

(28) (1-Mz)~F[Ma, A + 'Aa; 6 +%2

(29) ,=(1- 4) "(1-%4z)c~2&F[b -Vza, b +2-Ya; 6+i;z2/(2-z 2

(next page cont'd)

PRINT ON THE FOLLOWING PAGES IS PARTIALLY ILLEGIBLF
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(30) F(c, b; 2b; z)= (1- Mz)

Y. F1 , 2b - a; b + Y,; ( )( )M[ 1-2

(31) F (a, b; 2; z)=U +Ydi(-4)"z 2+

xF[a,ab+;2b)/; 
+ z

(32) F (czb;a- b + 1; z)= (l--lz)~"

X F[ ,4(r+I-a21/2;- b + 1; -4 z (-z)Y]

(33) F(a, b;a- b + 1;z)=+z) )

X F[Vz +!12 t, Y a + I- b; a - b + 1; -4-z (I-Z)~2]

(30 ~ab; a - b + 1; z)=(+)~--

x F["' ,.Y2 a +1; a - b 1; 4z (1+ z)-2J

- (35) F(aZb; a-(b +1; z)(l~zP2(l+ )2b-

SF[(a+ 1 - 2b)/2, (a -52b + 2)/2; at +-+b; 4z(+ zf)-J

(36) F (q, b; a - b + 1; z)= (1+ z)~2

xF[a, a-b+%;2a--2b+1;4z(+Z5)2.

The lhs hypergeometric fanction Of the qaadratic transformation (34).

s'ioald.be: F(1/2a, 1/2a+1/
2 ; a-b-+; 4z(1+z)-2). This is a typo error

in both -[3) ad [15) references

The rational cubic transformations. For an extensive list of cbic transformations

see [15).

(40) F(3c, 3r.+%; 4/2 + 2/3; Z)=(1-9z/8)-2

X FV; a+M; a+5/6;-27z 2(1-z)(9z-S)~f1

(41) F(3ca 3+M; 2c+5/6;z)=(l9z)2

X F[+, a+M; 2a+ 5/6;-27z(1 - z)2(1-9Z)-2).

(42) F (3a, a+ 1/6; 4a + 2/3;z)l= (1--z/4)~3-

x F[a, a + 1/3; 2(-, 5/6; -27z 2(z -4)~3)

(43) F(3a, 1/3-- a; 2 a + 5/6; z)=(1- 44Z)-3a

x F[c,, c-I/I; 2:- i5/G; 27 z (4 z - 1)~3)

(44) F (3, 1/3- a; 1/2;z) = (4- z)~"

S XF[a, 1/6 - a; 1/2; (z/27) (9 -8 z)2U(1- z)]

- (45) F(3+, a +1/6; 1/2; Z)(1-zY2a

X F[,1/G- ;1/2;-(Z/27) (z - 9) 2 W4(I-z) -

(46) P( 3p + 1/2, 5/6-a; 3/2; z)= (1- 8 z/9) (1 - 4 z/3) 3
,
3 1

xcF[+1/2, a + 5/6; 3/2;Z(98 2 (4z-3)~3 )

(47) ['(3cr, + 1/2, a 4 2/3; 3/2; z) (1 - z/9) (1

x F , [ 1/2, cG+ 5/6; 3/2; z(z 9) 2 (z+ 3)3j
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APPENDIX 3

The represettation of elementary fuactioris ia terms of a hyper.,eometric- fanction:

From refereace [3j:

(4) (1+ z)"-F(-c, ;b;-z)

(5) AZ(I+ z;)-z + (1- zt)-2%=F(c, a+M; 1; z)

(6) +A+Y(1-z)'/21~ 2%=F(a -' 2, a; 2"; )

d1-z) F +, a +'; 2';z)

(7) (- )21 (1+ z) F(2a, a + 1; a; z)

The truncated binomial series follow:

( G))+)z+ -- k + z = z F(- L; a-nt + ; -7).

P(a 1) V)(9) zn= z A+I ~ ,1 ;-z

-~ -r ~ m m+1

(10) Oz:= (2 cosh z)~ twa z I1 +14a, 14 +i-a; 1 + a; (cosh z)~')

(1)) cos az F[ a, - M .; ,; (sin Il)2

I, -[ % + 1 C, ' 7; V; :n,2

(cos z)c F[- Ma, V2 - 'A a; Z; - (tan )

(12) sin az a sin z F[ 2+ 32a,Y -' a"; 3/2; (sin z) 2
]

asnlz 2 z F[-+ % ya, I--Ma; 3/2; (sinzl)2

(13) sin-' z Mz FQ,M/; 3/2; z2)

(14) tan~',z=z F(, 1; 3/2;-z 2 )

(15 lo~z+ 1 Z (, 1; 2; - z)

1+ Z
(16) Jog =2z F (4, 1; 3/2; 2)

I-z
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From refereice [21]:

15.3 F(1, 1; 2; z)=--z-2Jn ( 1 -z)

153.6

-t'In +;'!),

15.1. a, bg; bFz)=1-

15.1.9 F(a , 4+a; -) -a2

15.10

1.1.1

F(a, 1ct; 

15.1.131+2=(-z)

F(a, ?+a; 12a; z=t (1+Z)fla+(1z)

153.34

F(a, ~a; ; )

sin(2z --(1)z-1

15.1.15 F (a, -a;.2-)= sn z)=s i j) a s( z-

Ca sin (2)
15.16i2,a; X; sin' s7a1)-sis ( 2z)

1 ; EQ-a, a; ;Sin= ' Cos(2a z

Cosz
15.1.3a, -a; B;sin' z)==-- 0a2

15.1.19 F (t, ,-Fa; ?i; -tan 2yco50 _. os (2az
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From 'refere -ce [22):

(- n, f; It - I)=(1+- z) +If arbitrary]
El

2. r(-4- -~' - _ -_ - ____+_ 3)
' 2Z' 2 ' } -

3. Fi( (n. o;2m
-2.oY

3. li F i t, 2 ; 2c;+ -( )

8 I n-i t -2 3 22 ( z -(t-Z
2 ' 2 +z i 2m.zt- 2

S F 1-- ;n-2-; -- -. Q+ z'I" --

6. F (1, ;; 2; ,z)

7 - -z -

40. ,inj' z. y 2\ e.C i

lim F I, k; ; 1k' I 2 Timh1,k: 2: =

11 tm k U __ z . Sifl

+ -1z + 2 limp 1, k; 3; = .. ='t .

9. n , Ne+e~' ch Z.

- . ,) p7 - -z I rCO-SZ h
fl-o i A/; k'==/

- 10. iia - k, kV; -2UZI,.

It. lim F k, k'-z7 sin z .

.lim F k; -CosZ.

13. F 3  n z .

m. nOL-! i n- 3-. Sin nz
2_ 2 2 si stnz

ns2 2 3 sizn

17. F - t: - - , sin -Z = ..

16. Qt2 ' 2' 2' sinOSz

,~.,(.n-2 .uiyI 3 ., si _ n
it.Sll !

20. ~t!~ Sil C ll i

17 . F --- . , -- z - :;- = - = - .

2It2 / ElCs:. n+ n F 1 3 - in = c s''r:

1./ r 2 ' ;

2 
.It,. ; ;silt= szz E 1

(fl 1 c-t 1 - os: 11122. F- j ' n2 1 2; s r z) = C(S S El1
n n1tco nz

O's p -___ ..... C.os r

1.4f, t' ' c sr

23.

24.

5.

1 101(4),GCA 127 La

GA 127 11

CA 127 M1a

CA 127 IV

GA 127 V

GA 127 VI

CA 127 V1

GA 127 Vil

CA 127 X

CA 127 X

CA 127 x

CA 127 x1

GA 127 XIII

GA1 :' XIV

CA 127 xv

GA 1127 XVI

CA 127 XVII

CA 127 xvnr

GA 127 XIX

01(11),GA 127 XX

1(11),GA 127 XXI

LII ll - IUI nZ),U 1 ,-XL
EH i 0(1),,GA 127 xxII

, -; - tgz) - cosnCOS" . GA 127 XXIII

F~ ~ -- ; ;4 Z- ),- (7A z1

S! V cCZ.

, 

; I; (co i- .'d

9.122

1.
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(co t' d)

26. F 1Q ; ; z) es=il z(cf.

27. 3 i- arct(z

28. E - Arshz (c
28. F ( 's0 l

29FjZL. -t 4: =)&in(nrcsinrI

2 2 z/ A - z

2. -( acoscnarcsin z)

32. F ('4-11 12)ncos (n arcsi z)

9.121 13.;.

1. 9.121 15.).

L. 9.121 26.3.

(cf. 9.121 16.).

(cI. 9.121 17.).

(4. 0.121 20.).

(cf. 9.121 21.).




